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Missing values are a practical issue in the analysis of longitudinal data. Multiple imputation

(MI) is a well-known likelihood-based method that has optimal properties in terms of

efficiency and consistency if the imputation model is correctly specified. Doubly robust

(DR) weighing-based methods protect against misspecification bias if one of the models,

but not necessarily both, for the data or the mechanism leading to missing data is correct.

We propose a new imputation method that captures the simplicity of MI and protection

fromtheDRmethod.Thismethod integratesMIandDRtoprotectagainstmisspecification

of the imputation model under a missing at random assumption. Our method avoids

analytical complications of missing data particularly in multivariate settings, and is easy to

implement in standard statistical packages. Moreover, the proposed method works very

well with an intermittent pattern ofmissingness when otherDRmethods can not be used.

Simulation experiments show that the proposed approach achieves improved perfor-

mancewhenoneof themodels is correct.Themethod isapplied todata fromthefireworks

disasterstudy,arandomizedclinical trial comparingtherapies indisaster-exposedchildren.

We conclude that the new method increases the robustness of imputations.

1. Introduction

An analysis of longitudinal datamight suffer frommissing values. In a clinical trial study, for
instance, some intended measurements cannot be taken owing to unwillingness of the

individuals. Failure to take missing data into account can lead to biased inferences.

One common assumption in the analysis of missing data is that they are missing at

random (MAR) in the sense that the process governing missingness does not depend on

the unobservedmeasurements, after conditioning on the observedmeasurements (Rubin,

1976). Verification of the MAR assumption using the observed data is not possible

(Molenberghs, Beunckens, Sotto, & Kenward, 2008) so the plausibility of MAR must be

thoughtfully considered using the expert knowledge or other external sources. In most
practical cases, however, the MAR assumption is often assumed and found to be a more

plausible assumption to start with (Schafer, 1997). Our best hope is that the MAR

assumption nearly holds, and the impact of unobserved measurements on our

conclusions is minimal. If it is suspected that the MAR assumption is violated, sensitivity

analysis can be performed to investigate the limitation of modelling assumptions (see, for

example, Kenward, 1998; Robins, Rotnitzky, & Scharfstein, 1999). Throughout this paper
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we assume either that the MAR assumption is plausible, or that we wish to conduct an

MAR analysis as a point of departure for sensitivity analyses.

Multiple imputation (MI) is an accepted method of dealing with missing data. The use

ofMI is becoming increasingly routine because of its simplicity and software development
(Schafer &Graham, 2002). The doubly robust (DR)method is an alternative approach that

uses the augmented inverse probability weights (AIPWs) to refine the estimates of the

parameters (e.g., Bang & Robins, 2005; Rotnitzky, 2009). The method requires

specification of two models: one that models the distribution of the complete data,

including both the outcomes and covariates, and another that models the missingness

mechanism. If one of the two models is correctly specified, then the estimates of the

parameters of interest are asymptotically unbiased.

Several authors have compared MI and DR (e.g., Carpenter, Kenward, & Vansteelandt,
2006; Jolani, vanBuuren,&Frank,2013;Qi,Wang,&He,2010). ThemajoradvantageofMI

is thatstandardcompletedatamethodscanbeusedtoanalyse thedata. Inotherwords, if the

missing values are replacedwith the imputed values, any statistical analyses canbe applied

to thecompleteddata.However,MIenablesvalid inferencesonly if the imputationmodel is

correctly specified. In contrast, the DR method provides estimates that are consistent if

either the complete data model (the model of scientific interest) or the model for the

missingness mechanism is correct. The method provides the analyst two chances of

obtaining valid inferences, rather than one. The technical nature of theDRmethod, on the
other hand, hampers practical application. Moreover, the DR method can be unstable in

practice when both models are misspecified or when the probability weights are close to

zero (Kang & Schafer, 2007). A number of authors have reported improved DR estimators

concerning these issues (Cao, Tsiatis, & Davidian, 2009; Tsiatis, Davidian, & Cao, 2011).

Scharfstein, Rotnitzky, & Robins, (1999, pp. 1140–1141) showed the regression

representation of the AIPWestimator inmissing datamodels underMAR. This estimator is

DR and can be constructed by including the inverse of the probability weights into the

complete data model as an additional predictor (Vansteelandt, Carpenter, & Kenward,
2010). This methodology was further extended to longitudinal monotone missing data

(Bang & Robins, 2005). A limitation of this extension is the lack of generalization to

intermittent missing data in which several variables have missing observations in an

arbitrary pattern.No general rule exists to extend theirworks in intermittentmissing data.

Recently, Daniel and Kenward (2012) proposed a DR-type imputation method based on

the inverse of the probability weights that works for a subset of MAR, but it is not obvious

how to extend their method to the imputation of multivariate missing data in general. In

addition, propensities near zero produce extremely large inverses of the probability
weights that cause explosion of the imputation values (Kang & Schafer, 2007;

Vansteelandt et al., 2010; Zhang & Little, 2011).

As the specification of the imputation model plays an important role in the validity of

MI, it would be desirable if the imputation model could be protected against

misspecification. To achieve this goal, we need to construct an imputation model that

has the double robustness property. A general strategy to achieve this is to incorporate

functions of the propensity score, the probability of being observed given some

covariates, into the imputation model as a predictor.
The present paper introduces a new class of MI which is doubly protected, and which

can be applied to any patterns of missingness including intermittent missing data. We

integrate DR and MI, and thus construct a dual imputation model (DIM). The new

method is designed to increase the robustness of the imputation model while attempting

to avoid bias from the final inference.
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The key feature of the DIM strategy is to iteratively estimate propensities for each

incomplete variable conditional on the other variables, and to impute missing values on

that variable by including a function of propensities (e.g., the inverse of the propensities)

into the imputation model. The new imputation method is expected to be readily robust,
and it is designed to solve problems with any pattern of missing data.

In the next section, we describe data from the Enschede fireworks disaster study and

motivate the analysis of these data by the new imputation method. Section 3 describes a

model that is typically used in longitudinal studies. Section 4 provides a general DIM

framework when the missing data have an arbitrary pattern of missingness. The final

sections evaluate the performance of our method in terms of simulation studies, and

analysis of our data.

2. Motivating example

To helpmotivate thematerial in this paper, we briefly describe the fireworks disaster data

(FDD; van Buuren, 2012). The fireworks disaster study was a randomized clinical trial to

compare cognitive behavioural therapy (CBT) and eye movement desensitization and

reprocessing (EMDR) in disaster-exposed children aged 4–18 years. This study was
conducted after an explosion at a fireworks factory in Enschede, theNetherlands, in 2000.

Fifty-two children and their parents, who showed signs of post-traumatic stress disorder

(PTSD), were randomized to one of two treatment arms, CBT and EMDR (De Roos et al.,

2011). Theprimary outcomemeasurewas theUniversity of California at Los Angeles PTSD

reaction index (PTSD-RI) obtained at pre-treatment, post-treatment (4–8 weeks), and

follow-up (3 months) alongwith baseline covariates such as age and sex. The central goal

was to compare the effectiveness of CBT and EMDR by comparing the means of the

PTSD-RI in both treatments.Wehere compare the two treatment conditions by estimating
the difference between the means of the PTSD-RI at the end of study. This provides

marginal effects of the treatments on reducing PTSD-RI.

This study suffered from intermittent non-response. The reasons for skipping one or

more occasions were that the parents were overburdened, refused to talk, or language

problems. We assume the MARmechanism is a plausible assumption in our data set, or at

least it is considered as a suitable point of departure for conducting sensitivity analysis. Of

the 52 children, 31, 42, and 46% had a missing measurement of the PTSD-RI per visit. The

intermittent pattern of missingness clearly complicates statistical inferences. According
to the intention-to-treat principle in clinical trials, the outcomes should be analysed using

data from all randomized participants, which in this case is impossible because of the

missing data.

A large number of variables exist in the FDD, and setting up an appropriate imputation

model requires some care. Our plan is to apply the DIM strategy to reduce the bias, if any,

in the imputation model. The propensity scores, if correctly estimated, can remove the

bias for estimating the mean of the outcome variable (i.e., the mean of PTSD-RI). In sum,

robustness of the imputed values might be increased by including the propensity related
covariate in the imputation model.

3. Model

In a longitudinal study, it is often of interest to evaluate the mean of an outcome variable

over time. LetYit be themeasurement of the outcome variable for individuals i = 1,…,n at
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times t = 1,…,T. We assume that individuals are independent, and Yit is a function of

explanatory variables Xit ¼ ðXi0;X
�
itÞ0. Note that a boldface letter indicates a vector

throughout. In randomized studies,Xi0 typically includes the treatment arm indicator and

baseline characteristics such as age and sex, and X�
it includes time-dependent covariates

such as interactions of the baseline variables with time. We consider a longitudinal

regression model where the conditional mean of Yit given Xit can be specified as

EðYit jXitÞ ¼ gðXit ; bÞ; ð1Þ

where gðXit ; bÞ is a known function ofb, andb is ap 9 1 vector of unknownparameters in

whichwe are interested. The regressionmodel in equation (1) is flexible since it allows for

the dependence of the mean of Yit on baseline and time-dependent covariates. As an

example, in the FDD, one can specify a linear regression gðXit ; bÞ ¼ b0 þ
b1t þ b2Ai þ b3Ait with Ai defining the treatment arm indicator (CBT or EMDR), and

b ¼ ðb0; b1; b2; b3Þ0 containing the parameters of the model for the conditional

expectation of Yit given Xit which changes linearly with time, treatment arm indicator,

and interaction between time and treatment arm indicator.

Further assume that, in addition to Yit and Xit , a vector of other time-dependent

covariates Uit is also available at each occasion, but of no substantive interest in the

sense that the scientific aim is the estimation of the conditional mean of Yit given Xit

rather than the conditional mean of Yit given Xit and Uit . In the FDD, for instance, the
PTSD-RI scores of the parents are of secondary interest, and the effect of the

randomized treatment on the PTSD-RI score of child i at time t, Yit , would be reflected

in the model in equation (1), which does not further adjust for the score of his or her

parents (Uit).

Suppose that Xit and Uit are always observed, but Yit can be observed or missing. Let

Rit denote a binary response indicator for individual i at time t; that is, Rit ¼ 1 if Yit is

observed and Rit ¼ 0 otherwise. We further assume that the probability of response

follows a specified parametric model. In what follows it is convenient to define
Yið� tÞ ¼ ðYi1; . . .;Yiðt�1Þ;Yiðtþ 1Þ; . . .;YiT Þ0, and Wit ¼ ðYið�tÞ;Xit ;UitÞ0. Note that, for

individual i at time t,Wit contains the outcome variable for all visits except for time t and

full collections of variables Xit and Uit .

GivenWit , let rit denote the realization of Rit for individual i at time t. The conditional

probability PðRit ¼ rit jWitÞ follows a parametric model up to a q 9 1 parameter vector

at . Let pitðatÞ ¼ PðRit ¼ 1jWitÞ; then

logitfpitðatÞg ¼ hðWit ; atÞ; t ¼ 1; . . .; T ; ð2Þ

where h(�;�) is a known function. A common candidate for the transformation of pitðatÞ in
model in equation (2) is the logistic function. However, other transformations such as the

probit function can be accommodated. It should be noted that the so-called propensity

score model in equation (2) is a general model for the missingness mechanism. For

example, in the FDD, one can consider logitfpitðatÞg ¼ a0t þ a1tAi þ a2tUit þ a3tYiðt�1Þ
where themechanism ofmissingness at time t is a function of the treatment arm, the score

of PTSD-RI for the parents at time t, and the score of PTSD-RI for the child at time t � 1.
It is very important to recognize that the probability of being observed forYit in model

in equation (2) does not depend on Yit , while it can depend on the outcomes at the other

time points (i.e., Yi1; . . .;Yiðt�1Þ;Yiðtþ 1Þ; . . .;YiT ). This makes the model for the response

probabilities (equation (2)) different from the missing not at random approaches where
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the response probability for Yit depends on the outcome variable Yit as well as the other

outcomes (see, for example, Diggle & Kenward, 1994).

4. Dual imputation model

4.1. Univariate missing data

In this section, we show how to construct a DIM for longitudinal data when the

missing-data mechanism is ignorable (Little & Rubin, 2002, p. 119). Suppose, for

simplicity, that only the outcome variable for the last occasion (YT ) is incomplete. Let

YT ;obs and YT ;mis denote the observed and missing parts of YT , respectively. Suppressing i
from the notation, standard MI suggests (i) fitting a model f ðYT jXT ;Y�T ; hT Þ to the

observed part of YT by, for instance, least squares, and drawing ~hT from the posterior

distribution PðhT jXT ;YT ;obs;Y�T Þ, and (ii) imputing YT ;mis by the regression estimator

f ðYT jXT ;Y�T ; ~hT Þ plus random noises.

The imputation model of the above case might suffer frommisspecification especially

when the uncertainty due to themodel specification grows relative to sampling variation.

Therefore, we attempt to address misspecification of the imputation model, if any, by

making amodification in the direction of the propensity score pT . This is motivated by the
fact that the propensity score is a summary of WT that makes YT and RT conditionally

independent (Rosenbaum, 2002).

Following Bang and Robins (2005), we incorporate the inverse of pT into the

imputation model as follows. We estimate pT from the parametric model in equation (2)

with a known link function (e.g., logit link), and add p̂�1
T as an additional predictor into the

imputation model. Note that inclusion of p̂�1
T is a sufficient conditions to obtain a DR

estimator in this setting (Scharfstein et al., 1999). The new imputationmodel then fits the

model f ðYT jXT ;Y�T ; p̂�1
T ; h�T Þ ¼ f ðYT jXT ;Y�T ; hT Þ þ cT p̂

�1
T to the observed part of YT

where h�T ¼ ðhT ; cT Þ, and cT is a regression coefficient for the new predictor p̂�1
T . As an

example, the imputation model can take the linear form f ðYT jXT ;Y�T ; p̂�1
T ; h�T Þ

¼ h01XT þ h02Y�T þ cT p̂
�1
T , where h�T ¼ ðh01; h02; cT Þ. A random draw ~h�T is made from

its posterior distribution, and the missing part of YT is imputed under the regression

estimator f ðYT jXT ;Y�T ; p̂�1
T ; ~h�T Þ. It should be noted that the resulting imputations are

doubly protected in the sense that either the model f ðYT jXT ;Y�T ; hT Þ or the model pT is

correct (Bang & Robins, 2005).

4.2. Multivariate missing data

Extending the DIM to incomplete longitudinal data with an arbitrary pattern of

missingness is not straightforward. The obvious reason is the multivariate nature of

missing datawhich creates complexity formaking inferences. To describe the procedure,

we should first consider a joint probability distribution for the complete responses. In a

longitudinal study, when the repeated measurements are quantitative, it is common to

assume a multivariate normal distribution for the correlated responses. Even if the
assumption of normality might not ultimately be a realistic choice for other situations

(e.g., binary cases), it may still be reasonable to assume a multivariate normal distribution

for the purpose of imputation (Bernaards, Belin, & Schafer, 2007; Demirtas, Freels, &

Yucel, 2008; Schafer, 1997).

More formally, write Y ¼ fYitg and R ¼ fRitg as n 9 T matrices of outcomes and

response indicators. We assume that the rows of Y are independent and identically
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distributed from the joint distribution P(Y;h) where we index the probability density

function ofY by h. Denote the observed part ofY byYobs, and the missing part byYmis, so

that Y ¼ ðYobs;YmisÞ.
Under ignorability, the missingness mechanism formally plays no role in making

inferences about h. However, many researchers recognize that modelling themissingness

mechanism is useful for model validation and criticism (Gelman, Carlin, Stern, & Rubin,

2004, ch. 6–7). Moreover, using such information for the purpose of imputation may lead

to sharper inferences (Schafer, 2003). As the actual observed data areV ¼ ðYobs;R;X;UÞ,
the posterior predictive distribution of missing data given the observed data can be

defined as

PðYmisjVÞ ¼
Z Z

PðYmisjV; h; aÞpðh; ajVÞ@h@a; ð3Þ

where P(h,a|V)/P(V|h,a)p(h,a), and p(h,a) is the prior density. Here, in fact, the

imputation procedure proposed by Rubin (1987, p. 161) is extended by incorporating a

nuisance parameter a into it. The purpose of including a is to increase robustness of

imputations.

The ignorable missing datamechanism implies that the parameters h and a are a priori

independent,p(h,a) = p(h)p(a). Theposterior distribution of theparameters h and a given

the observed data can then be written as Pðh; ajVÞ ¼ PðajX;U;Yobs;RÞPðhjX;YobsÞ,
where PðajX;U;Yobs;RÞ / PðRjX;U;Yobs; aÞpðaÞ and PðhjX;YobsÞ / PðYobsjX; hÞpðhÞ.
In this paper, we use standard non-informative priors for parameters h and a.

Direct simulation fromequation (3) is difficult due to themultivariate nature ofmissing

data and general pattern of missingness. One standard solution is to draw approximate

samples using a Gibbs-type sampling scheme. That is, the missing values in each

incomplete variable are imputed conditional on the other variables. In what follows, we

suppress i from the notation. For each incomplete variable Yt , t = 1,…,T, the model in

equation (2) can be used to draw a random value of a and estimate the propensity score

p�1
t based on the drawn value. The imputation model f ðYt jXt ;Y�t ; p�1

t Þ then generates
imputations for the missing part of Yt . Note that we include p�1

t in a semi-parametric

fashion in the imputation model as it is a necessary condition to obtain a DR estimator

(Bang & Robins, 2005). Cycling through all themodels, posterior draws of the parameters

are made given current values of the other variables. More specifically, one can draw

samples through the following steps at iteration k:

Step 1. Draw a
ðkÞ
1 from Pða1jWðk�1Þ

1 ;R1Þ; draw h
ðkÞ
1 from Pðh1jX1;Y1;obs;Y

ðk�1Þ
�1 Þ; draw

Y
ðkÞ
1;mis from PðY1jX1;Y

ðk�1Þ
�1 ; h

ðkÞ
1 ; a

ðkÞ
1 Þ.

Step 2. Draw a
ðkÞ
2 from Pða2jWðk�1Þ

2 ;R2Þ; draw h
ðkÞ
2 from Pðh2jX2;Y2;obs;Y

ðk�1Þ
�2 Þ; draw

Y
ðkÞ
2;mis from PðY2jX2;Y

ðk�1Þ
�2 ; h

ðkÞ
2 ; a

ðkÞ
2 Þ.

Step T. Draw aðkÞ
T

from Pða
T
jWðk�1Þ

T ;RT Þ; draw h
ðkÞ
T from PðhT jXT ;YT ;obs;Y

ðk�1Þ
�T Þ; draw

Y
ðkÞ
T ;mis from PðYT jXT ;Y

ðk�1Þ
�T ; h

ðkÞ
T ; a

ðkÞ
T Þ.

The whole cycle is repeated, usually a small number of times, until approximate

convergence. One set of MIs is then taken from the final cycle. The whole process is then

repeated to produceM completed data sets. This procedure is similar to MI using chained

equations (van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006) or sequential

regressions (Raghunathan, Lepkowski, van Hoewyk, & Solenberger, 2001).

The algorithm is the possibly incompatible Gibbs sampler. Although there is no

guarantee for the existence of the joint distribution from which the values are drawn,
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experience has shown that it often leads to valid statistical inferences in a variety of cases

(Lee & Carlin, 2010; van Buuren, 2007). The issue of compatibility of conditional

distributions is a topic in ongoing and current research. Recently, Liu, Gelman, Hill, and Su

(2012) studied extensively properties of the stationary distribution of the sequential
imputations. They confined their attention to a subclass of incompatible models, such as

our case, and showed that the estimates of parameters are consistent.

From a practical point of view, sequential imputations have great practical value since

the algorithm is suitable for complex sets of incomplete data such as non-monotone

missing data that do not follow a known joint distribution. The approach is widely used

and has displayed success inmany practical examples (Gelman&Raghunathan, 2001; Lee

& Carlin, 2010; van Buuren, Boshuizen, & Knook, 1999; White, Royston, &Wood, 2011).

We now summarize the steps of the DIM as follows:
1. Impute initially missing data by taking a random draw from the observed data.

2. Repeatedly, for t = 1,…,T:

(a). Estimate ât in themodel in equation (2) from the current completed data, anddraw a

random value _at from its posterior distribution.

(b). Calculate the propensity scores p̂t given the drawn value _at .
(c). Add p̂�1

t into the imputation model as an additional predictor.

(d). Estimate the parameters of the imputation model f ðYt jX;Y�t ; p̂�1
t Þ only for Yt;obs.

(e). Draw a random value of the parameters in (d) from their posterior distributions.
(f). Impute Yt;mis by using the drawn value in (e) and add an appropriate amount of

noise.

3. Return to step 2 to iterate the algorithm a small number of times, say 10 or 20.

When some of the estimated propensity scores are close to zero, the performance of

theDIMcan be disastrous. This is because some extremely large estimates of the inverse of

the propensities are used for imputation of missing data. Several authors have warned

against the use of inverse propensitywhen its variance is very large, and thus the sampling

distribution of the DR imputation is skewed and highly variable (Kang & Schafer, 2007;
Robins, Sued, Lei-Gomez, & Rotnitzky, 2007).

In order to evade the problem, we stratify p̂�1
t , t = 1,…,T, into a few equally sized

categories (usually 5). This is a classical strategy for the elimination of selection bias

(Cochran, 1968). Thus, we create s � 1 dummy variables and include them in the

imputation model as predictors. More specifically, we define dummy variables

dt ¼ ðdt1; . . .;dtðs�1ÞÞ where dts1 ¼ 1 if the corresponding p̂�1
t belongs to stratum s1,

s1 ¼ 1; . . .; s � 1. The imputation model for the incomplete variable Yt thus takes the

form f ðYt jX;Y�t ;dtÞ.
Stratification on p̂�1

t can be an advantageous strategy since it mitigates the danger of

p̂t � 0. This approach provides approximately equal weight to those individuals that are

in the same stratum.

5. Simulation study

This section presents results from simulation experiments to investigate the behaviour of

the DIM approach for a longitudinal study with intermittent missing data. We first assign

each subject i, i = 1,…,n, to either a control or a treatment group Xi with equal sizes and

assume subjects are independent. For each visit t, t = 1,2,3, we generate longitudinal

responses via the linear model Yit ¼ b0 þ b1t þ b2Xi þ b3Xit þ eit , where eit is an

error component, and b ¼ ðb0; b1; b2; b3Þ ¼ ð1:0;�2:0;�1:0; 0:5Þ. An unconstrained

Dual imputation model 7



covariance matrix Ry is used to generate the error components for the responses, such

that the upper triangular part of the covariance matrix Ry is defined by

vechðRyÞ ¼ ð4:0; 3:2; 2:5; 4:0; 3:0; 4:0Þ0. As described in Section 3, our main interest is

in making inferences about b.
In addition to the response variable Yi ¼ ðYi1;Yi2;Yi3Þ0, we generate the secondary

interest variable Ui ¼ ðUi1;Ui2;Ui3Þ0 with another mean vector and a covariance

structure such that vechðRuÞ ¼ ð6:0; 3:6; 2:0; 6:0; 3:6; 6:0Þ0. Independence of the

subjects implies that covðYit ;UjkÞ ¼ 0 for all t,k and i 6¼ j. But, for the same subject i,

Yi and Ui can be related. In other words, covðYit ;UikÞ is not necessarily zero for t,

k = 1,2,3. We use the following structure to keep these relations simple:

covðYit ;UikÞ ¼ ryu; t ¼ k;
0; t 6¼ k,

�

for all t,k. In the simulation study, ryu took two values, 4.4 and 2.4, that produce two

scenarios of strong correlation (qyu � :9) and moderate correlation (qyu � :5) between
Yit and Uit . It should be noted that we also considered a scenario of weak correlation

(qyu � :3), but the results were similar to the moderate scenario, so we do not report

them here. We use n = 100 and n = 1,000.

To create missing data, we consider the proposed methodology by van Buuren et al.

(2006), which is a general method for generating intermittent missing entries under

MAR. We generate missing values in Yi ¼ ðYi1;Yi2;Yi3Þ0 conditional on the observed

data. For instance, for the pattern Ri ¼ ð0; 0; 1Þ, missing values in Yi1 are created as a

function of Yi3 and Ui1, and missing values in Yi2 are created as a function of Yi3 and Ui2.
A full description of this procedure can be found in van Buuren et al. (2006). In our

simulation, the percentages of incomplete cases for each visit were 10, 29 and 45%,

respectively.

We compare the DIM approach with complete-case (CC) analysis and MI in terms of

bias of the estimate of b (Bias), 95% coverage rate (Cov), and root mean squared error

(RMSE). It should be noted that we calculated two types of DIM estimates: the DIMst with

stratification of the inverse of the propensities into five strata of equal size, and the DIMtr

with the inverse of the propensities censored at 0.05 when they were below 0.05. We do
not report the results with the raw inverse of the propensities as the estimates went off

desperately. The number of the draws of the Gibbs sampler was set to 10, and the number

of imputation sets was set to 5 with 1,000 Monte Carlo simulations. All calculations were

done in R 2.15.1 using MICE (version 2.13; van Buuren & Groothuis-Oudshoorn, 2011).

For MI, the imputation model is correctly specified if it consists of all observed

variables Y,X,U (imp-true) or misspecified by removing the secondary interest variable U
from the imputation model (imp-false). The complete data model can be either correct or

incorrect. Likewise, for the propensity score model, there are two possibilities. Thus, for
theDIM, there exist four options: bothmodels are correctly specified (y⊗p-true); only the
propensity score model is misspecified by removing the secondary interest variable U
from the mechanism of missingness (p-false); only the complete data model is

misspecified by ignoring the fact that Y and U are related, that is, by eliminating U
(y-false); or both models are incorrect (y⊗p-false). It should be noted that we focus on

cases where one or both models are misspecified by omitting an important variable to

emphasize the importance of the secondary interest variables that are typically ignored in

the imputation of missing data in practice.
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The results for the estimates of b in the different conditions are presented in Tables 1

and 2. In general, CC performs poorly. Except for b2 and b3, estimates of the parameters

are biased, and coverage rates are low. For instance, the coverage rate of b1 rapidly

declines to zero when the sample size is n = 1,000 in the moderate correlation situation.
As expected, MI provides correct results if the imputation model is correct (imp-true),

but it produces biased estimates when the imputation model is misspecified (imp-false).

The DIM strategy, on the other hand, provides valid estimates as long as one of themodels

is correct. Coverage rates are high too.Note that theperformance ofDIMst is slightly better

than that of DIMtr, indicating a possible effect ofmore extreme propensities. In particular,

for n = 1,000 and qyu � :5, when the propensity score model is correctly specified only

(y-false), the performance of DIMtr is not as precise as that of DIMst .

Interestingly, the DIM approaches perform better than CC when both models are
misspecified. Also, coverage rates are improved compared to CC. Here, a misspecified

imputation model is preferable to CC, but this might not be true in general. A similar

situation holds for MI with incorrect imputation model (imp-false). RMSE is smaller in all

situations where MI and the DIM work as expected than the other situations.

6. Application

Wenowdemonstrate how to apply the DIM approach to the FDD introduced in Section 2.

Recall that interest focuses on the effectiveness of EMDR compared to CBT. To develop

the model for the data, we assume that Yit represents the outcome variables PTSD-RI for

child i (i = 1,…,52) at time point t (t = 1,2,3) according to the longitudinal model

Yit ¼ b0 þ b1t þ b2Xi þ b3Xit þ eit ;

where b ¼ ðb0; b1; b2; b3Þ0 is a vector of parameters, Xi is the treatment indicator (0 =
EMDR), and ei ¼ ðei1; ei2; ei3Þ0 � Nð0;RÞ with an unconstrained covariance matrix Σ.
Had we observed full data, a classical generalized linear model could have been sufficient

to obtain valid estimates of the parameters from the above model. Missing values are an

inherent problem in this study, and, unfortunately, an intermittent pattern of missingness

makes the analysis of FDD evenmore complicated. Performing an imputation strategy is a

reasonable solution for estimation of b.
An important issue in FDD is relatively small sample sizes compared to the number of

variables. Including all variables in the imputation model reduces the degrees of freedom

for residuals that lead to overparametrization of the model. In such cases, there is not
enough information in small samples compared to the number of parameters to efficiently

estimate the covariance matrix. Consequently, the estimates of the parameters will

become unstable. We thus should carefully construct an imputation model such that it

imputes plausible values and avoids overparametrization of themodel. The general advice

is to include variables of scientific interest in the imputation model in addition to good

predictors such as baseline covariates, and then to correct for the bias, if any, by including

a function of propensities into the imputation model. This avoids enlargement of the

predictors in the imputation model.
We construct the imputation model as follows. First, we include the baseline

covariates sex (0 = female), age (years), treatment indicator (0 = EMDR), and indicator

of the country of origin (0 = the Netherlands) into the imputation model. Second, we

consider the scores for the primary outcome for the other time points. For instance, we

use Yi1 and Yi3 in the imputation model for Yi2. As, in addition to the outcome of interest

Dual imputation model 11



(UCLA-RI for children), the scores from the same testwere also recorded for the parents of

children (Uit), we include these additional variables in the imputation model too. Note

that to evade the growth in numbers of predictors in the imputation ofYit ,weonly include

the correspondingUit in the imputation model. As an example, the imputation model for

Yi2 contains Ui2, but not Ui1 and Ui3. Finally, we include the propensities in the

imputation model to correct for the potential bias. In Appendix A, we show a schematic
representation of predictor matrix for the outcome variables Y1;Y2 and Y3.

It should bementioned that the scores for parents (Uit) also havemissing observations.

Weuse the samestrategy for imputation.Moreover, therewere further secondaryoutcome

variables forbothchildrenandparents, but theyhadmissingdata and including them in the

imputationprocesswould lead tomore intricacy.Thehope is that inclusionofpropensities

would reduce bias that may result from misspecification of the imputation model.

To obtain propensities, we fit the propensity scoremodelwith the baseline covariates,

the primary outcome variables, and the parents’ PTSD-RI scores. For applying the DIM
approach, we considered 10 iterations of the Gibbs sampler to produce 100 sets of

imputed values. For comparison, we also estimate b by CC and MI along with the

corresponding standard error. The same imputation strategy and set-up are also

considered for MI.

Table 3 shows results based on the three approaches –CC,MI andDIM. A negative sign

of b1 (the coefficient of time) indicates a descending trend for both treatments EMDR and

CBT over time. As can be seen from Table 3, and considering this is only one data set, the

estimates of the parameters are virtually identical.
Recall the goal of the study, which is a comparison between two treatment conditions

EMDR and CBT at the end of the study. The difference between two treatment conditions

can be represented by d ¼ b2 þ 3b3. The bigger the estimated value of d, the larger the
difference between two therapies. Comparing themethods, we observe that the estimate

of d based on DIM is smaller than the other methods. That is, d = 4.38 for DIM, but

d = 4.87,5.63 for MI, CC, respectively. Although there were differences in estimates of d,
they were not statistically significant. Finally, the DIM approach produces marginally

higher standard errors. The reason is that the DIM imputation model imposes more noise
than standard MI.

7. Discussion

We have proposed a new imputation strategy that captures the simplicity of MI and the

protection from the DR method. The proposed method introduces the concept of DR
within the Markov chain Monte Carlo based framework. The DIM method as developed

here can handle the problem of incomplete data in a general pattern of missingness. This

Table 3. Results from fireworks disaster data. Est is the parameter estimate, and SE is the standard

error. CC is complete-case analysis, MI is standard multiple imputation, and DIM is dual imputation

modelling

Method

b0 b1 b2 b3

Est SE Est SE Est SE Est SE

CC 45.50 9.58 �13.81 4.67 �5.41 6.01 3.68 2.89

MI 46.76 9.91 �14.18 4.46 �7.07 6.18 3.98 2.77

DIM 47.20 12.21 �13.65 5.63 �7.29 7.57 3.89 3.47
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method is a useful alternative for situations where the other DR methods are difficult to

apply because of the non-monotonicity of the incomplete cases.

The results from the simulation suggest that the proposed approach enhances the

robustness of the imputationswith respect tomisspecification of the imputationmodel. It
appears that our method avoids potential bias in estimates and inferences. Treating small

propensities by stratification or truncation seems to be an effectivemethod. Furthermore,

the DIM approach is simple to implement in existing software.

In the propensity scores model we only considered the first-order terms, though a

more complex model with higher-order or interaction terms could be used. Using a more

complexpropensity scoremodelmight theoretically improve theperformance of theDIM

methodology, but the pay-off in doing so is likely to be small because the subtlety in

estimating the propensity scores is ignored by stratification of the propensities.
In practice, it is likely the case that both the MI model and propensity score model are

misspecified to some degree. Van Buuren et al. (1999) distinguished between three types

of variables in the imputationmodel: (1) variables that appear in the complete datamodel;

(2) variables that appear in the propensity scores model; and (3) variables that explain a

considerable amount of variance of the target variable. Application of DIM requires the

same distinction. Current practice is to include all types in the same imputation model.

The DIM model separates types 1 and 3 from type 2, with the advantage that only one of

twomodels needs to be correct to obtain unbiased results. If bothmodels aremisspecified
to some degree, DIMwill not guarantee fully accurate results, as we have shown. If a good

distinction is possible between types 1 and3 versus type 2 variables,we expect thatDIM is

nevertheless preferable to the standard practice of throwing everything into one model.

On the other hand, standard practice is likely to be easier if we cannot distinguish variable

types. Finding out the relative advantages of DIM over standard practice is an interesting

area of further research. In our simulation studies, the performance of the DIM approach

was (marginally) better than CC when both models were wrong. It remains unknown

whether these findings can be generalized to other situations.
Although we have presented the DIM approach with stratification on the inverse

propensity scores, this is by no means the only approach. An alternative way to

incorporate propensities into the complete datamodel is byutilizing a smoothing spline of

thepropensity scores in the complete datamodel (An&Little, 2008; Zhang&Little, 2009).

In addition, the propensity score model in this study was misspecified by omitting

important variables to emphasize the importance of the secondary interest variables. The

propensity score model can also be misspecified by including or removing superfluous

variables such as higher-order or interaction terms. The impact of different DIM strategies
on the inferences merits further research.
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Appendix A

Referring to the FDD example, Figure 1 shows which predictor variables are used to
construct imputation models for children’s scores (Y1;Y2;Y3). For instance, the outcome

variableY2 is imputed using variablesY1;Y3;X; and p�1
2 as predictors, whereX consists of

baseline covariates such as sex and treatment effect.

Figure 1. Schematic representation of predictor matrix for the outcome variables Y1;Y2 and Y3.
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