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4 Handbook of Missing Data

1.1 Introduction

1.1.1 Overview

The term fully conditional specification (FCS) refers to a class of imputation
models for non-monotone multivariate missing data. Other names for this class
of models include sequential regression multivariate imputation and chained
equations. As non-monotone missing data frequently occur in practice, FCS
covers a wide range of missing data problems.

The material presented here builds upon the foundations of multiple im-
putation as laid out in Chapter 13, and draws heavily on Chapters 4 and 5
of my book Flexible Imputation of Missing Data (van Buuren, 2012). Addi-
tional background, computer code to apply FCS in practice, and an overview
of current software can be found on www.multiple-imputation.com.

The present chapter focusses on fully conditional specification, an approach
for multivariate multiple imputation that has become very popular with prac-
titioners thanks to its ease of use and flexibility. Section 1.2 outlines a number
of practical problems that appear when trying to impute multivariate miss-
ing data. Section 1.3 distinguishes various multivariate missing data patterns,
and introduces four linkage measures that aid in setting up multivariate im-
putation models. Section 1.4 briefly review three general strategies to impute
multivariate missing data. Section 1.5 describes the FCS approach, its assump-
tions, its history, the Multivariate Imputation by Chained Equations (MICE)
algorithm, and discusses issues surrounding compatibility and performance.
Section 1.6 provides a systematic account of seven choices that needs to be
made when applying FCS in practice. Section 1.7 highlights the role of diag-
nostics in imputation.

1.1.2 Notation

Let Y denote the N × p matrix containing the data values on p variables for
all N units in the sample. The response indicator R is an N×p binary matrix.
Elements in R are denoted by rij with i = 1, . . . , N and j = 1, . . . , p. Element
rij = 1 if the corresponding data value in Y is observed, and rij = 0 if it is
missing. We assume that we know where the missing data are, so R is always
completely observed. The observed data in Y are collectively denoted by Y o.
The missing data are collectively denoted as Y m, and contain all Y -values
that we do not see because they are missing. Notation Yj denotes the j-th
column in Y , and Y−j indicates the complement of Yj , that is, all columns in
Y except Yj . When taken together Y = (Y o, Y m) contains the hypothetically
complete data values. However, the values of the part Y m are unknown to us,
and the data are thus incomplete. Notation Y o

j and Y m
j stand for the observed

and missing data in Yj , respectively. Symbol Ẏj stands for imputations of Y m
j .
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1.2 Practical problems in multivariate imputation

There are various practical problems that may occur when one tries to impute
multivariate missing data. Many imputation models for Yj use the remaining
columns Y−j as predictors. The rationale is that conditioning on Y−j preserves
the relations among the Yj in the imputed data. This section considers some
potential difficulties in setting up imputation models of this type.

Suppose that we want to impute variable Yj given other predictors in
the data Y−j . An obvious difficulty is that any of the predictors Y−j may
also contain missing data. In that case, it is not possible to calculate a linear
predictor for cases that have missing data, and consequently such cases cannot
be imputed.

A second difficulty is that circular dependence can occur, where Y m
j de-

pends on Y m
h and Y m

h depends on Y m
j with h 6= j. In general, Yj and Yh

are correlated, even given other variables. The limiting case occurs if Y m
h is

a function of Y m
j for example, a transformation. When ignored, such circu-

larities may lead to inconsistencies in the imputed data, or to solutions with
absurd values.

Third, variables may have different measurement levels, e.g., binary, un-
ordered categorical, ordered categorical, continuous, or censored data. Prop-
erly accounting for such features of the data is not possible using the appli-
cation of theoretically convenient models, such as the multivariate normal,
potentially leading to impossible values, e.g. negative counts. Distributions
can take many forms. If the scientific interest focusses on extreme quantiles
of the distribution, the imputation model should fairly represent the shape of
the entire distribution.

Many datasets consist of hundreds, or even thousands, of variables. This
creates problems in setting up imputation models. If the number of incomplete
variables is large, problems with collinearity, unstable regression weights and
empty cells occur. The general advice is to condition on as many variables
as possible, but this may easily lead to imputation models that have more
parameters than data points. A good selection of predictors and a judicious
choice of constraints will often substantially improve imputations.

The ordering of rows and columns can be meaningful, e.g., as in longitu-
dinal or spatial data. Data closer in space or time are typically more useful as
predictors. With monotone missing data, imputation needs to progress from
the most complete to least complete variable, so one may wish to regulate
the sequence in which variables are imputed. Also, modeling could be done
efficiently if it respects the known ordering in the data.

The relation between Yj and predictors Y−j can be complex, e.g., nonlinear,
subject to censoring processes, or functionally dependent. For example, if the
complete-data model requires a linear and a quadratic term, then both terms
should be present in the imputation model. Also, the contribution of a given
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predictor may depend on the value of another one. If such relations exist in the
observed data, it makes sense to preserve these in the imputed data. Taking
care of complex relations is not automatic and requires careful treatment on
behalf of the imputer.

Imputation of multivariate missing data can create impossible combina-
tions, such as pregnant grand-fathers, or ”quality of life” of the deceased. We
would generally like to avoid combinations of data values that can never occur
in reality (i.e., if the values we would have been observed), but achieving this
requires a careful analysis and setup of the imputation model.

In practice, it can also happen that the total of a set of variables is known
(e.g. a budget total), but that some of the components are missing. If two
components are missing, then imputation of one implies imputation of the
other, since both values should add up to a known total. A more complex
problem surfaces when two or more components are missing.

Finally, there are often different causes for the missing data in the same
dataset. For example, the missing data could result from a failure to submit the
questionnaire, from non-contact, from the fact that the respondent skipped the
question, and so on. Depending on the subject matter, each of these multiple
causes could require its own imputation model.

Other complexities may appear in real life. Properly addressing such issues
is not only challenging, but also vital to creating high quality and believable
imputations.

1.3 Missing data patterns

1.3.1 Overview

It is useful to study the missing data pattern for several reasons. For mono-
tone missing data, we have convergence in one step, so there is no need to
iterate. Also, the missing data pattern informs us which variables can contain
information for imputation, and hence plays an important role in the setup of
the imputation model.

Figure 1.1 illustrates four missing data patterns. The simplest type is the
monotone pattern, which can result from drop-out in longitudinal studies. If a
pattern is monotone, the variables can be sorted conveniently according to the
percentage of missing data. Imputation can then proceed variable by variable
from left to right with one pass through the data (Little and Rubin, 2002).

The patterns displayed in Figure 1.1 are connected since it is possible to
travel to all dark cells by horizontal or vertical moves, just like the moves of
the rook in chess. Connected patterns are needed to estimate parameters. For
example, in order to be able to estimate a correlation coefficient between two
variables, they need to be connected, either directly by a set of cases that
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Univariate Monotone File matching General

FIGURE 1.1
Some missing data patterns in multivariate data. Dark is observed, light is
missing.

have scores on both, or indirectly through their relation with a third set of
connected data. Unconnected patterns may arise in particular data collection
designs, like data combination of different variables and samples, or potential
outcomes.

More intricate missing data patterns can occur for data organised in the
’long’ format, where different visits of the same subject form different rows in
the data. Van Buuren (2011) contains examples for hierarchical data.

1.3.2 Ways to quantify the linkage pattern

The missing data pattern influences the amount of information that can be
transferred between variables. Imputation can be more precise if other vari-
ables are present for those cases that are to be imputed. By contrast, predictors
are potentially more powerful if they are present in rows that are very incom-
plete in other columns. This section introduces four measures of linkage of the
missing data pattern. Note that degree of missingness is only one factor to
consider, so the material presented is very much a partial guide to decisions
faced by the imputer.

The proportion of usable cases (van Buuren et al., 1999) for imputing
variable Yj from variable Yk is defined as

Ijk =

∑n
i (1− rij)rik∑n
i (1− rij)

. (1.1)

This quantity can be interpreted as the number of pairs (Yj , Yk) with Yj
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missing and Yk observed, divided by the total number of missing cases in
Yj . The proportion of usable cases Ijk equals 1 if variable Yk is observed in
all records where Yj is missing. The statistic can be used to quickly select
potential predictors Yk for imputing Yj based on the missing data pattern.
High values of Ijk are preferred.

Reversely, we can also measure how well observed values in variable Yj
connect to missing data in other variables as

Ojk =

∑n
i rij(1− rik)∑n

i rij
. (1.2)

This quantity is the number of observed pairs (Yj , Yk) with Yj observed and
Yk missing, divided by the total number of observed cases in Yj . The quantity
Ojk equals 1 if variable Yj is observed in all records where Yk is missing.
The statistic can be used to evaluate whether Yj is a potential predictors for
imputing Yk.

The statistics in equations 1.1 and 1.2 are specific for the variable pair
(Yj , Yk). We can define overall measures of how variable Yj connects to all
other variables Y−j by aggregating over the variable pairs.

The influx coefficient Ij is defined as

Ij =

∑p
k

∑n
i (1− rij)rik∑p
k

∑n
i rik

(1.3)

The coefficient is equal to the number of variable pairs (Yj , Yk) with Yj missing
and Yk observed, divided by the total number of observed data cells. The
value of Ij depends on the proportion of missing data of the variable. Influx of
a completely observed variable is equal to 0, whereas for completely missing
variables we have Ij = 1. For two variables with the same proportion of missing
data, the variable with higher influx is better connected to the observed data,
and might thus be easier to impute.

The outflux coefficient Oj is defined in an analogous way as

Oj =

∑p
k

∑n
i rij(1− rik)∑p

k

∑n
i (1− rik)

(1.4)

The quantity Oj is the number of variable pairs with Yj observed and Yk
missing, divided by the total number of incomplete data cells. Outflux is an
indicator of the potential usefulness of Yj for imputing other variables. Out-
flux depends on the proportion of missing data of the variable. Outflux of a
completely observed variable is equal to 1, whereas outflux of a completely
missing variable is equal to 0. For two variables having the same proportion
of missing data, the variable with higher outflux is better connected to the
missing data, and thus potentially more useful for imputing other variables.
Note the word ’potentially’, since the actual usefulness will also depend on
the amount of association between the variables.
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FIGURE 1.2
Fluxplot: Outflux versus influx in the four missing data patterns from Fig-
ure 1.1.

The influx of a variable quantifies how well its missing data connect to the
observed data on other variables. The outflux of a variable quantifies how well
its observed data connect to the missing data on other variables. Higher influx
and outflux values are preferred. Figure 1.2 plots outflux against influx. In
general, variables that are located higher up in the display are more complete
and thus potentially more useful for imputation. In practice, variables closer
to the subdiagonal are better connected than those further away. The fluxplot
can be used to spot variables that clutter the imputation model. Variables
that are located in the lower regions (especially near the left-lower corner)
and that are uninteresting for later analysis are better removed from the data
prior to imputation.

Influx and outflux are summaries of the missing data pattern intended
to aid in the construction of imputation models. Keeping everything else con-
stant, variables with high influx and outflux are preferred. Realize that outflux
indicates the potential (and not actual) contribution to impute other variables.
A variable with high Oj may turn out to be useless for imputation if it is fully
unrelated to the incomplete variables, e.g., an administrative person identifier.
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On the other hand, the usefulness of a highly predictive variable is severely
limited by a low Oj .

1.4 Multivariate imputation models

1.4.1 Overview

Rubin (1987, pp. 160–166) distinguished three tasks for creating imputations:
the modeling task, the imputation task, and the estimation task. The modeling
task is to provide a specification for the joint distribution P (Y ) = P (Y o, Y m)
of the hypothetically complete data. The issues that arise with incomplete data
are essentially the same as for complete data, but in imputation the emphasis
is on getting accurate predictions of the missing values. The imputation task is
to specify the posterior predictive distribution P (Y m|Y o) of the missing values
given the observed data and given the assumed model P (Y ). The estimation
task consists of calculating the posterior distribution of the parameters of this
distribution given the observed data, so that random draws can be made from
it.

In Rubin’s framework, the imputations follow from the specification of the
joint distribution P (Y ). Van Buuren (2007) distinguished three strategies to
specify the model used to impute multivariate missing data.

• Monotone data imputation. Given a monotone missing data pattern, im-
putations are created by drawing for a sequence of univariate conditional
distributions P (Yj |Y1, . . . , Yj−1) for j = 1, . . . , p;

• Fully conditional specification (FCS). For general patterns, the user spec-
ifies a conditional distribution P (Yj |Y−j) directly for each variable Yj ,
and assumes this distribution to be the same for the observed and miss-
ing Yj (ignorability assumption). Imputations are created by iterative
drawing from these conditional distributions. The multivariate model
P (Y ) is implicitly specified by the given sets of conditional models;

• Joint modeling. For general patterns, imputations are drawn from a mul-
tivariate model P (Y ) fitted to the data, usually per missing data pattern,
from the derived conditional distributions.

Chapter 13 reviews methods for multiple imputation for monotone missing
data, whereas Chapter 15 covers joint modeling in great detail. The present
chapter concentrates on FCS. The remainder of this section briefly reviews
monotone data imputation and joint modeling.
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1.4.2 Imputation of monotone missing data

If the missing data pattern in Y is monotone, then the variables can be or-
dered as Y1, . . . , Yj , . . . , Yp according to their missingness. The joint distribu-
tion P (Y ) = (Y o, Y m) decomposes as (Rubin, 1987, pp. 174)

P (Y |φ) = P (Y1|φ1)P (Y2|Y1, φ2) . . . P (Yp|Y1, . . . , Yp−1, φp) (1.5)

where φ1, . . . , φj , . . . , φp are the parameters of the model to describes the
distribution of Y . The φj parameters only serve to create imputations, and
are generally not of any scientific interest or relevance. The decomposition
requires that the missing data pattern is monotone. In addition, there is a
second, more technical requirement: the parameters of the imputation models
should be distinct (Rubin, 1987, pp. 174–178).

Monotone data imputation is fast and provides great modeling flexibility.
Depending on the data, Y1 can be imputed by a logistic model, Y2 by a linear
model, Y3 by a proportional odds model, and so on. In practice, a dataset
may be near-monotone, and may become monotone if a small fraction of the
missing data were imputed (Li, 1988; Rubin and Schafer, 1990; Schafer, 1997;
Rubin, 2003b). See Chapter 13 for more detail.

1.4.3 Imputation by joint modeling

Joint modeling starts from the assumption that the hypothetically complete
data can be described by a multivariate distribution. Assuming ignorability,
imputations are created as draws under the assumed model. Joint modeling
describes the data Y by the multivariate distribution P (Y |θ), where θ is a
vector of unknown parameters of the distribution. The model for P (Y |θ) can
be any multivariate distribution, but the multivariate normal distribution,
with θ = (µ,Σ) for the mean µ and covariance Σ, is a convenient and popular
choice.

Within the joint modeling framework, the parameters of scientific interest
are functions of θ (Schafer, 1997, Ch. 4). Observe that the θ parameters are
conceptually different from the φj parameters used in Section 1.4.2. The θ
parameters derive from the multivariate model specification, whereas the φj
parameters are just unknown parameters of the imputation model, and have
no scientific relevance.

When the assumptions hold, joint modeling is elegant and efficient. For
example, under multivariate normality, the sweep operator and reverse sweep
operator are highly efficient computational tools for converting outcomes into
predictors and vice versa. See Little and Rubin (2002, pp. 148–156) and
Schafer (1997, p. 157–163) for details.

The major limitation of joint modeling is that the specified multivariate
model may not be a good fit to the data. For example, if the data are skewed
or if dependencies occur in the data, it could prove be difficult to find an ap-
propriate multivariate model. Schafer (1997, p. 211–218) reported simulations
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that showed that imputations drawn under the multivariate normal model
are generally robust to non-normal data. Joint modeling by a multivariate
distribution can often be made more realistic through data transformations,
or through the use of specific rounding techniques. Nevertheless, in many prac-
tical situations where imputations are desired (c.f. section 1.2), there will be
no reasonable multivariate model for the data.

1.5 Fully conditional specification (FCS)

1.5.1 Overview

In contrast to joint modeling, FCS specifies the multivariate distribution
P (Y |θ) through a set of conditional densities P (Yj |Y−j , φj), where φj are
unknown parameters of the imputation model. As in section 1.4.2, the φj
parameters are not of scientific interest, and only serve to model conditional
relations used for imputation. The key assumption is that the conditional den-
sities for Y o

j and Y m
j are the same (ignorability assumption). This conditional

density is used to impute Y m
j given the other information. Starting from sim-

ple random draws from the marginal distribution, imputations Ẏ1 are drawn
for Y m

1 given the information in the other columns. Then, Y2 is imputed given
the currently imputed data, and so on until all variables are imputed with
one pass through the data. Then, Y m

1 is re-imputed during the second itera-
tion using the imputation draw in iteration one, and so on. In practice, the
iteration process can already be stopped after five or ten passes through the
data. FCS is a generalization of univariate imputation for monotone data, and
borrows the idea of Gibbs sampling from the joint modeling framework.

FCS bypasses task 1 of the procedure of section 1.4.1, the specification of
the joint distribution P (Y |θ). Instead, the user specifies the conditional dis-
tribution P (Yj |Y−j) directly for each variable Yj . Imputations are created by
iterative draws from these conditional distributions. The multivariate model
P (Y |θ) is only implicitly specified by the specified set of conditional models.

The idea of conditionally specified models is quite old. Conditional prob-
ability distributions follow naturally from the theory of stochastic Markov
chains (Bartlett, 1978, pp. 231–236). For spatial data analysis, Besag pre-
ferred the use of conditional probability models over joint probability models,
since “the conditional probability approach has greater intuitive appeal to the
practising statistician” (Besag, 1974, p. 223). Buck (1960) proposed a proce-
dure for calculating estimates for all missing entries by multiple regression.
For example, to impute missing data in the first variable, Y1 was regressed on
Y2, . . . , Yp, where the regression coefficients are computed using the complete
cases. Buck’s method does not iterate and requires a large sized sample of
complete cases. Gleason and Staelin (1975) extended Buck’s method to in-
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clude multivariate regression, and noted that their ad-hoc method could also
be derived more formally from the multivariate normal distribution. These au-
thors also brought up the possibility of an iterated version of Buck’s method,
suggesting that missing entries from one iteration could be used to form an
improved estimate of the correlation matrix for use in a subsequent iteration.
Due to a lack of computational resources at that time, they were unable to
evaluate the idea, but later work along these lines has been put forward by
Finkbeiner (1979), Raymond and Roberts (1987), Jinn and Sedransk (1989),
van Buuren and van Rijckevorsel (1992) and Gold and Bentler (2000).

Multiple imputation is different from this literature because it draws im-
putations from a distribution instead of calculating optimal predictive val-
ues. Ideas similar to FCS have surfaced under a variety of names: stochastic
relaxation (Kennickell, 1991), variable-by-variable imputation (Brand, 1999),
switching regressions (van Buuren et al., 1999), sequential regressions (Raghu-
nathan et al., 2001), ordered pseudo-Gibbs sampler (Heckerman et al., 2001),
partially incompatible MCMC (Rubin, 2003a), iterated univariate imputa-
tion (Gelman, 2004) and chained equations (van Buuren and Groothuis-
Oudshoorn, 2000).

The main reasons for using FCS is increased flexibility and ease of use.
Little (2013) explains the advantages of conditional modeling as follows:

When modeling, it can be useful to factor a multivariate distribu-
tion into sequence of conditional distributions. Univariate regres-
sion is easier to understand, and a sequence of univariate condi-
tional regressions is more easily elaborated, for example, by includ-
ing interactions, polynomials, or splines, or modeling heteroscedas-
ticity.

1.5.2 Chained equations: The MICE algorithm

There are several ways to implement imputation under conditionally specified
models. Algorithm 1.1 describes one particular instance: the MICE algorithm
(van Buuren and Groothuis-Oudshoorn, 2000, 2011) which divides the mul-
tivariate data in columns. The algorithm starts with a random draw from
the observed data, and imputes the incomplete data in a variable-by-variable
fashion. One iteration consists of one cycle through all Yj . The number of iter-
ations can often be low, say 5 or 10. The MICE algorithm generates multiple
imputations by executing Algorithm 1.1 in parallel m times.

1.5.3 Properties

The MICE algorithm is a Markov chain Monte Carlo (MCMC) method, where
the state space is the collection of all imputed values. If the conditionals are
compatible, the MICE algorithm is a Gibbs sampler, a Bayesian simulation
technique that samples from the conditional distributions in order to obtain
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Algorithm 1.1: MICE algorithm for imputation of multivariate missing data.

1. Specify an imputation model P (Y m
j |Y o

j , Y−j) for variable Yj with
j = 1, . . . , p.

2. For each j, fill in starting imputations Ẏ 0
j by random draws from

Y o
j .

3. Repeat for t = 1, . . . , T :

4. Repeat for j = 1, . . . , p:

5. Define Ẏ t
−j = (Ẏ t

1 , . . . , Ẏ
t
j−1, Ẏ

t−1
j+1 , . . . , Ẏ

t−1
p ) as the currently com-

plete data except Yj .

6. Draw φ̇tj ∼ P (φtj |Y o
j , Ẏ

t
−j).

7. Draw imputations Ẏ t
j ∼ P (Y m

j |Y o
j , Ẏ

t
−j , φ̇

t
j).

8. End repeat j.

9. End repeat t.

samples from the joint distribution (Gelfand and Smith, 1990; Casella and
George, 1992). In conventional applications of the Gibbs sampler the full con-
ditional distributions are derived from the joint probability distribution (Gilks,
1996). In MICE however, the conditional distributions are directly specified
by the user, and so the joint distribution is only implicitly known, and may
not even exist. While the latter is clearly undesirable from a theoretical point
of view (since we do not know the joint distribution to which the algorithm
converges), in practice it does not seem to hinder useful applications of the
method (cf. Section 1.5.4).

In order to converge to a stationary distribution, a Markov chain needs to
satisfy three important properties (Roberts, 1996; Tierney, 1996):

• irreducible, the chain must be able to reach all interesting parts of the
state space;

• aperiodic, the chain should not oscillate between states;

• recurrence, all interesting parts can be reached infinitely often, at least
from almost all starting points.

With the MICE algorithm, irreducibility is generally not a problem since the
user has large control over the interesting parts of the state space. This flexi-
bility is actually the main rationale for FCS instead of a joint model.

Periodicity is a potential problem, and can arise in the situation where
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imputation models are clearly inconsistent. A rather artificial example of os-
cillatory behavior occurs when Y1 is imputed by Y2β+ε1 and Y2 is imputed by
−Y1β + ε2 for some constant β. The sampler will oscillate between two qual-
itatively different states, so this is a periodic procedure. The problem with
periodic sampler is that the result will depend on the stopping point. In gen-
eral, we would like the statistical inferences to be independent of the stopping
point. A way to diagnose the ping-pong problem is to stop the chain at dif-
ferent points. The stopping point should not affect the statistical inferences.
The addition of noise to create imputations is a safeguard against periodicity,
and allows the sampler to “break out” more easily.

Non-recurrence may also be a potential difficulty, manifesting itself as
explosive or non-stationary behavior. For example, if imputations are made
through deterministic functions, the Markov chain may lock up. Such cases can
sometimes be diagnosed from the trace lines of the sampler. See van Buuren
and Groothuis-Oudshoorn (2011) for examples and remedies. As long as the
parameters of imputation models are estimated from the data, non-recurrence
is likely to be mild or absent.

1.5.4 Compatibility

Gibbs sampling is based on the idea that knowledge of the conditional distribu-
tions is sufficient to determine a joint distribution, if it exists. Two conditional
densities P (Y1|Y2) and P (Y2|Y1) are said to be compatible if a joint distribution
P (Y1, Y2) exists that has P (Y1|Y2) and P (Y2|Y1) as its conditional densities.
More precisely, the two conditional densities are compatible if and only if
their density ratio P (Y1|Y2)/P (Y2|Y1) factorizes into the product u(Y1)v(Y2)
for some integrable functions u and v (Besag, 1974). So, the joint distribution
either exists and is unique, or does not exist.

The MICE algorithm is ignorant of the non-existence of the joint distribu-
tion, and happily produces imputations whether the joint distribution exists
or not. The question is whether the imputed data can be trusted when we
cannot find a joint distribution P (Y1, Y2) that has P (Y1|Y2) and P (Y2|Y1) as
its conditionals.

For the trivariate case, the joint distribution P (Y1, Y2, Y3), if it exists,
is uniquely specified by the following set of three conditionals: P (Y1|Y2, Y3),
P (Y2|Y3) and P (Y3|Y1) (Gelman and Speed, 1993). Imputation under FCS typ-
ically specifies general forms for P (Y1|Y2, Y3), P (Y2|Y1, Y3) and P (Y3|Y1, Y2),
which is different, and estimates the free parameters for these conditionals
from the data. Typically, the number of parameters in imputation is much
larger than needed to uniquely determine P (Y1, Y2, Y3). While perhaps inef-
ficient as a parametrization, it is not easy to see why that in itself would
introduce bias or affect the accuracy of the imputations.

Not much is known about the consequences of incompatibility on the qual-
ity of imputations. Simulations with strongly incompatible models found no
adverse effects on the estimates after multiple imputation (van Buuren et al.,
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2006). Somewhat surprisingly, several methods based on deliberately speci-
fied incompatible methods outperformed complete case analysis. Imputation
using the partially compatible Gibbs sampler seems to be robust against in-
compatible conditionals in terms of bias and precision, thus suggesting that
incompatibility may be a relatively minor problem in multivariate imputation.
More work is needed to verify such claims in more general and more realistic
settings though.

In cases where the multivariate density is of genuine scientific interest,
incompatibility clearly represents an issue because the data cannot be rep-
resented by a formal model. For example, incompatible conditionals could
produce a ridge (or spike) in an otherwise smooth density, and the location of
the ridge may actually depend on the stopping point. If such is the case, then
we should have a reason to favor a particular stopping point. Alternatively,
we might try to reformulate the imputation model so that the stopping point
effect disappears. In imputation the objective is to make correct statistical in-
ferences by augmenting the data and preserving the relations and uncertainty
in the data. In that case, having a joint distribution may be convenient the-
oretically, but the price may be lack of fit. Gelman and Raghunathan (2001)
remarked:

One may argue that having a joint distribution in the imputa-
tion is less important than incorporating information from other
variables and unique features of the dataset (e.g., zero/nonzero fea-
tures in income components, bounds, skip patterns, nonlinearity,
interactions.

In practice, incompatibility issues could arise in MICE if deterministic
functions of the data are imputed along with their originals. For example, the
imputation model may contain interaction terms, data summaries or nonlin-
ear functions of the data. Such terms may introduce feedback loops and im-
possible combinations into the system, which can invalidate the imputations
(van Buuren and Groothuis-Oudshoorn, 2011). It is important to diagnose
this behavior, and eliminate feedback loops from the system. Section 1.6.5
describes the tools to do this. Apart from potential feedback problems, it ap-
pears that incompatibility is a relatively minor problem in practice, especially
if the amount of missing data is modest.

Further theoretical work has been done by Arnold et al. (2002). The field
has recently become active. Several methods for identifying compatibility from
actual data have been developed in the last few years (Tian et al., 2009; Ip
and Wang, 2009; Tan et al., 2010; Wang and Kuo, 2010; Kuo and Wang, 2011;
Chen, 2011). It is not yet known what the added value of such methods will
be in the context of missing data.
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1.5.5 Number of iterations

When m sampling streams are calculated in parallel, monitoring convergence
is done by plotting one or more statistics of interest in each stream against
iteration number t. Common statistics to be plotted are the mean and standard
deviation of the synthetic data, as well as the correlation between different
variables. The pattern should be free of trend, and the variance within a
chain should approximate the variance between chains.

In practice, a low number of iterations appears to be enough. Brand (1999)
and (van Buuren et al., 1999) set the number of iterations T quite low, usually
somewhere between 5 to 20 iterations. This number is much lower than in other
applications of MCMC methods, which often require thousands of iterations.

The explanation for the pleasant property is that the imputed data Ẏ m

form the only memory of the MICE algorithm. Imputations are created in
a stepwise optimal fashion that adds a proper amount of random noise to
the predicted values (depending on the strength of the relations between the
variables), which helps to reduce the autocorrelation between successive draws.
Hence, convergence will be rapid, and in fact immediate if all variables are
independent. Thus, the incorporation of noise into the multiply-imputed data
has the pleasant side effect of speeding up convergence. Situations to watch
out for include:

• the correlations between the Yjs are high;

• the missing data rates are high;

• constraints on parameters across different variables exist.

The first two conditions directly affect the amount of autocorrelation in the
system. The latter condition becomes relevant for customized imputation mod-
els. A useful trick for reducing the amount of autocorrelation in highly corre-
lated repeated measures Y1 and Y2 is to draw imputations δ̇ for the increment
Y2− Y1 rather than for Y2. Imputations are then calculated as the sum of the
previous value and the increment, Y1 + δ̇.

Simulation work suggests that FCS can work well using no more than just
five iterations, but many more iterations might be needed in problems with
high correlations and high proportions of missing data (van Buuren, 2007,
2012).

It is important to investigate convergence by inspecting traces lines of
critical parameters the Gibbs samplers, as these might point to anomalies
in the imputed data. (van Buuren and Groothuis-Oudshoorn, 2011) shows
several cases with problematic convergence of the MICE algorithm, and may
even be entirely stuck because of circularities. Also, imputing large blocks of
correlated data may produce degenerate solutions van Buuren (2012, pp. 208).
Such cases can often be prevented by simplifying the prediction model.

In general, we should be careful about convergence in missing data prob-
lems with high correlations and high missing data rates. On the other hand,
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we really have to push the MICE algorithm to its limits to see adverse ef-
fect. Of course, it never hurts to do a couple of extra iterations, but in most
applications good results can be obtained with a small number of iterations.

1.5.6 Performance

Each conditional density has to be specified separately, so FCS requires (some-
times considerable) modeling effort on the part of the user. Most software pro-
vides reasonable defaults for standard situations, so the actual effort required
may be small.

A number of simulation studies provide evidence that FCS generally yields
estimates that are unbiased and that possess appropriate coverage (Brand,
1999; Raghunathan et al., 2001; Brand et al., 2003; Tang et al., 2005; van Bu-
uren et al., 2006; Horton and Kleinman, 2007; Yu et al., 2007). FCS and joint
modeling will often find similar estimates, especially for estimates that depend
on the center of the distribution, like mean, median, regression estimates, and
so on. Lee and Carlin (2010) contrasted the multivariate normal joint model
to FCS using a simulation of a typical epidemiological set-up. They found
that both the FCS and joint modeling provided substantial gains over CCA
when estimating the binary intervention effect. The joint model appeared to
perform well even in the presence of binary and ordinal variables. The regres-
sion estimates pertaining to a skewed variable were biased when normality
was assumed. Transforming to normality (in joint modeling or FCS) or using
predictive mean matching (in FCS) could resolve this problem.

The studies by van der Palm et al. (2012) and Gebregziabher (2012) com-
pared various imputation methods for fully categorical data, based on both
joint modeling and FCS. They reported some mild improvements of a more
recent latent class model over a standard FCS model based on logistic regres-
sion. Both studies indicate that the number of latent classes needs to be large.
Additional detail can be found in the original papers.

Although the substantive conclusions are generally robust to the precise
form of the imputation model, the use of the multivariate normal model,
whether rounded or not, is generally inappropriate for the imputation of cat-
egorical data (van Buuren, 2007). The problem is that the imputation model
is more restrictive than the complete-data model, an undesirable situation
known as uncongeniality (Meng, 1994; Schafer, 2003). More particularly, the
multivariate normal model assumes that categories are equidistant, that the
relations between all pairs of variables is linear, that the residual variance is
the same at every predicted value, and that no interactions between variables
exist. Without appropriate assessment of the validity of these assumptions,
imputation may actually introduce systematic biases into the data that we
may not be aware of. For example, Lee et al. (2012) demonstrated that im-
puting ordinal variables as continuous can lead to bias in the estimation of
the exposure outcome association in the presence of a non-linear relationship.
It may seem a trivial remark, but continuous data are best imputed by meth-
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ods designed for continuous data, and categorical data are best imputed by
methods designed for categorical data.

1.6 Modeling in FCS

1.6.1 Overview

The specification of the imputation model is the most challenging step in
multiple imputation. The imputation model should

• account for the process that created the missing data,

• preserve the relations in the data, and

• preserve the uncertainty about these relations.

The idea is that adherence to these principles will yield proper imputations,
and thus result in valid statistical inferences (Rubin, 1987, pp. 118-128). Van
Buuren and Groothuis-Oudshoorn (2011) list the following seven choices:

1. First, we should decide whether the MAR assumption is plausible.
Chained equations can handle both MAR and MNAR, but multiple im-
putation under MNAR requires additional modeling assumptions that
influence the generated imputations.

2. The second choice refers to the form of the imputation model. The form
encompasses both the structural part and the assumed error distribu-
tion. In FCS the form needs to be specified for each incomplete column
in the data. The choice will be steered by the scale of the variable to
be imputed, and preferably incorporates knowledge about the relation
between the variables.

3. A third choice concerns the set of variables to include as predictors in
the imputation model. The general advice is to include as many relevant
variables as possible, including their interactions. This may, however,
lead to unwieldy model specifications.

4. The fourth choice is whether we should impute variables that are func-
tions of other (incomplete) variables. Many datasets contain derived
variables, sum scores, ratios and so on. It can be useful to incorporate
the transformed variables into the multiple imputation algorithm.

5. The fifth choice concerns the order in which variables should be imputed.
The visit sequence may affect the convergence of the algorithm and the
synchronization between derived variables.
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6. The sixth choice concerns the setup of the starting imputations and the
number of iterations. The convergence of the MICE algorithm can be
monitored by trace lines.

7. The seventh choice is m, the number of multiply imputed datasets. Set-
ting m too low may result in large simulation error and statistical inef-
ficiency, especially if the fraction of missing information is high.

The above points are by no means exhaustive. Much sensible advice on
modeling in multiple imputation in an FCS context also can be found in Sterne
et al. (2009), White et al. (2011b) and Carpenter and Kenward (2013). The
remainder of this section discusses points 1–5. Point 6 was already addressed
in section 1.5.5, while point 7 was discussed in Chapter 13.

1.6.2 MAR or MNAR?

The most important decision in setting up an imputation model is to determine
whether the available data are enough to solve the missing data problem at
hand. The MAR assumption is essentially the belief that the available data
are sufficient to correct for the missing data. Unfortunately, the distinction
between MAR and MNAR cannot, in general, be made from the data. In
practice, 99% of the analysts assume MAR, sometimes explicitly, but often
more so implicitly. While MAR is often useful as a starting point, the actual
causes of the missingness may be related to the quantities of scientific interest,
even after accounting for the data. An incorrect MAR assumption may then
produce biased estimates.

Collins et al. (2001) investigated the role of ’lurking’ variables Z that are
correlated with the variables of interest Y and with the missingness of Y .
For linear regression, they found that if the missing data rate did not exceed
25% and if the correlation between the Z and Y was 0.4, omitting Z from
the imputation model had a negligible effect. For more extreme situations
(50% missing data and/or a correlation of 0.9) the effect depended strongly
on the form of the missing data mechanism. When the probability of being
missing was linear in Z, then omitting Z from the imputation model only
affected the intercept, whereas the regression weights and variance estimates
were unaffected. When more missing data were created in the extremes, the
reverse occurred: omitting Z biased the regression coefficients and variance
estimates, but the intercept was unbiased with the correct confidence interval.
In summary, they found that all estimates under multiple imputation appeared
robust against MNAR. Beyond a correlation of 0.4, or for a missing data rate
over 25%, it is the form of the missing data mechanism that determines which
parameters will be biased.

While these results are generally comforting, there are three main strate-
gies that we might pursue if the response mechanism is nonignorable:

• Expand the data in the imputation model in the hope of making the
missing data mechanism closer to MAR;
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• Formulate an explicit nonresponse model in combination with a
complete-data model, and estimate the parameters of interest;

• Formulate and fit a series of nonignorable imputation models, and per-
form sensitivity analysis on the critical parameters.

In the first strategy, the MAR assumption is the natural starting point.
MAR could be made more plausible by finding additional data that are
strongly predictive of the missingness, and include these into the imputation
model. The fact that these are included is more important than the precise
form in which that is done (Jolani et al., 2013).

There is a large literature on the second option, often starting from the
Heckman model (Heckman, 1979). There has been some recent work to gener-
ate multiple imputations under this model, as well as generalizations thereof.
The key idea is the extend the imputation model with a model for the missing
data process, where the probability of being missing depends on the variable
Yj to be imputed. The FCS framework can be used to generate imputations
under the combined model by drawing imputations for Yj and Rj . See Jolani
(2012) for details.

Finally, one might perform a concise simulation study as in Collins et al.
(2001) customized for the problem at hand with the goal of finding out how
extreme the MNAR mechanism needs to be to influence the parameters of
scientific interest. More generally, the use of sensitivity is advocated by the
Panel on Handling Missing Data in Clinical Trials of the National Research
Council (Council, 2010). Chapter 20 of the Handbook deals with sensitivity
analysis using multiple imputation.

1.6.3 Model form

The MICE algorithm requires a specification of a univariate imputation
method separately for each incomplete variable. It is important to select uni-
variate imputation methods that have correct statistical coverage for the sci-
entific parameters of interest, and that yield sensible imputed values. The
measurement level of a variable largely determines the form of the univariate
imputation model. There are special methods for continuous, dichotomous,
ordered categories, unordered categories, count data, semi-continuous data,
censored data, truncated data and rounded data. In addition, there are re-
gression tree imputation methods aimed at preserving interactions. Chapter 3
of van Buuren (2012) contains an in-depth treatment of many univariate im-
putation methods. Predictive mean matching (Little, 1988) is an allround
imputation method that works well in many cases. It is the default method in
MICE for imputing continuous data (van Buuren and Groothuis-Oudshoorn,
2011).

Model specification is straightforward when the data are cross-sectional
or longitudinal, where in the longitudinal setting, different time points are
coded as different columns, i.e. as a broad matrix. Genuinely hierarchical data
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are typically coded as a long matrix, with time points or nested observations
are coded as distinct rows. Van Buuren (2011) discusses and compares three
imputation methods for hierarchical data:

• Ignore any clustering structure in the data, and use standard imputation
techniques tools for nonhierarchical data;

• Add the cluster allocation as a fixed factor, thus allowing for between
class variation by a fixed effects model;

• Draw imputations under a linear mixed-effect model by a Markov Chain
Monte Carlo algorithm.

Ignoring the multilevel structure when in fact it is present will bias the intra-
class correlation downwards, adding a fixed factor will bias it upwards, while
the linear mixed-effects model is about right. In general, smaller class sizes
complicate the imputation problem. Overall, imputation under the linear
mixed-effects model is superior to the two other methods, but it is not yet
ideal as the coverage may fail to achieve the nominal level. Computational
details can be found in van Buuren (2012, pp. 84–87). Moreover, Chapter 9 of
that book contains two applications on longitudinal data, one using a broad
matrix in a repeated measured problem, and the other using the linear mixed-
effects imputation model on the long matrix.

1.6.4 Predictors

The general advice is to include as many variables in the imputation model
as possible (Meng, 1994; Collins et al., 2001), but there are necessarily com-
putational limitations that must be taken into account. Conditioning on all
other data is often reasonable for small to medium datasets, containing up
to, say, 20–30 variables, without derived variables, interactions effects and
other complexities. Including as many predictors as possible tends to make
the MAR assumption more plausible, thus reducing the need to make special
adjustments for MNAR.

For datasets containing hundreds or thousands of variables, using all pre-
dictors may not be feasible (because of multicollinearity and computational
problems) to include all these variables. It is also not necessary. In practice,
the increase in explained variance in linear regression is typically negligible
after the best, say, 15 variables have been included. For imputation purposes,
it is expedient to select a suitable subset of data that contains no more than
15 to 25 variables. Hardt et al. (2012) suggested that the number of complete
rows in the imputation model should be at least three times the number of
variables. Van Buuren et al. (1999) provide the following strategy for selecting
predictor variables from a large database:

1. Include all variables that appear in the complete data model, i.e., the
model that will be applied to the data after imputation, including the
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outcome (Little, 1992; Moons et al., 2006). Failure to include the out-
come will bias the complete data analysis, especially if the complete
data model contains strong predictive relations. Note that this step is
somewhat counter-intuitive, as it may seem that imputation would artifi-
cially strengthen the relations of the complete data model, which would
be clearly undesirable. If done properly however, this is not the case.
On the contrary, not including the complete data model variables will
tend to bias the results toward zero. Note that interactions of scientific
interest also need to be included in the imputation model.

2. In addition, include the variables that are related to the nonresponse.
Factors that are known to have influenced the occurrence of missing data
(stratification, reasons for nonresponse) are to be included on substan-
tive grounds. Other variables of interest are those for which the distri-
butions differ between the response and nonresponse groups. These can
be found by inspecting their correlations with the response indicator of
the variable to be imputed. If the magnitude of this correlation exceeds
a certain level, then the variable should be included.

3. In addition, include variables that explain a considerable amount of vari-
ance. Such predictors help reduce the uncertainty of the imputations.
They are basically identified by their correlation with the target vari-
able. Only include predictors with a relatively high outflux coefficient
(cf. section 1.3).

4. Remove from the variables selected in steps 2 and 3 those variables
that have too many missing values within the subgroup of incomplete
cases. A simple indicator is the percentage of observed cases within this
subgroup, the percentage of usable cases (cf. section 1.3).

Most predictors used for imputation are incomplete themselves. In princi-
ple, one could apply the above modeling steps for each incomplete predictor
in turn, but this may lead to a cascade of auxiliary imputation problems. In
doing so, one runs the risk that every variable needs to be included after all.

In practice, there is often a small set of key variables, for which imputa-
tions are needed, which suggests that steps 1 through 4 are to be performed for
key variables only. This was the approach taken in van Buuren and Groothuis-
Oudshoorn (1999), but it may miss important predictors of predictors. A safer
and more efficient, though more laborious, strategy is to perform the model-
ing steps also for the predictors of predictors of key variables. This is done
in Groothuis-Oudshoorn et al. (1999). At the terminal node, one can apply
a simple method, like sampling from the marginal, that does not need any
predictors for itself.

By default, most computer programs impute a variable Yj from all other
variables Y−j in the data. Some programs, however, have the ability to specify
the set of predictors to be used per incomplete variable (Su et al., 2011; van
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Buuren and Groothuis-Oudshoorn, 2011; Royston and White, 2011). These
facilities are highly useful for refining the imputation model and for customiz-
ing the imputations to the data. Ridge regression (Hoerl and Kennard, 1970;
Tibshirani, 1996) provides a alternative way to control the estimation process,
making the algorithm more robust at the expense of bias.

Although it might seem somewhat laborious, the quality of the imputed
values can be enhanced considerably by a judicious specification of the set of
predictors that enter imputation model. It is generally worthwhile to set apart
some time to set up the imputation model, often in combination with the use
of suitable diagnostics (c.f. section 1.7).

1.6.5 Derived variables

Derived variables (transformations, recodes, interaction terms, and so on) pose
special challenges for the imputation model. There are three general strategies
to impute derived variables:

1. Leave derived variables out of the imputation, and calculate them after-
wards from the multiply-imputed data;

2. Calculate derived variables before imputation, and impute them as
usual;

3. Update derived variables within the imputation algorithm as soon as
one of the original variables is imputed.

Method 1 is easy, but the generated imputations do not account for the re-
lationship between the derived variables and other variables in the data, po-
tentially resulting is biased estimates in the complete-data analysis. Method 2
repairs this deficit, but at the expense of creating inconsistencies between the
imputations of the originals and of the derived versions. Method 3 can address
both problems, but some care is needed in setting up the predictor matrix.
This section looks briefly at various types of derived variables.

In practice, there is often extra knowledge about the data that is not
modeled explicitly. For example, consider the weight/height ratio, defined as
weight divided by height (kg/m). If any one of the triplet height, weight or
weight/height ratio is missing, then the missing value can be calculated with
certainty by a simple deterministic rule. Unless we specify otherwise, the de-
fault imputation model is however unaware of the relation between the three
variables, and will produce imputations that are inconsistent with the rule.
Inconsistent imputations are undesirable since they yield combinations of data
values that are impossible had the data been observed.

The easiest way to deal with the problem is to leave any derived data
outside the imputation process (Method 1). For example, we may impute
any missing height and weight data, and append weight/height ratio to the
imputed data afterward. The disadvantage is this post-imputation method is
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that the derived variable is not available for imputation, potentially resulting
in incorrect statistical inferences.

Another possibility is to calculate the weight/height ratio before imputa-
tion, and impute it as “just another variable,” an approach known as JAV
(Method 2). Although JAV may yield valid statistical inferences in particular
cases (for linear regression weights under MCAR, see von Hippel (2009)), it
invariably produces impossible combinations of imputed values, and may be
biased under MAR.

A solution for this problem is passive imputation, a method that calculates
the derived variable on the fly once one of its components is imputed (Method
3). Passive imputation maintains the consistency among different transfor-
mations of the same data (thus solving the problem of JAV) and makes the
derived variable available for imputation (thus solving the problem of the
post-imputation method).

Care is needed in setting up the predictor matrix when using passive im-
putation. In particular, we may not use the derived variable as a predictor
for its components, so feedback loops between the derived variables and their
originals should be broken. In the above example, we would thus need to
remove the weight/height ratio from the imputation models for height and
weight. Failing to do so may result in absurd imputations and problematic
convergence.

Figure 1.3 compares JAV to passive imputation on real data. The leftmost
panel in Figure 1.3 shows the results of JAV. The imputations are far off
any of the observed data, since JAV ignores the fact that the weight/height
ratio is a function of height and weight. The middle panel shows that passive
imputation represents an improvement over JAV. The values are generally
similar to the real data and adhere to the derived rules. The rightmost panel
shows that somewhat improved imputations can be obtained by preventing
that the body mass index (BMI) and weight/height ratio (which have an
exact nonlinear relationship) are simultaneous predictors.

The sum score is another type of derived variable. The sum score unde-
fined if one of the original variables is missing. Sum scores of imputed vari-
ables are useful within the MICE algorithm to economize on the number of
predictors. Van Buuren (2010) reports a simulation on sub scale scores from
imputed questionnaire items that shows that plain multiple imputation using
sum scores improves upon dedicated imputation methods. See sections 7.3 and
9.2 in van Buuren (2012) for applications on real data.

Interaction terms are also derived variables. The standard MICE algorithm
only accommodates main effects. Sometimes the interaction between variables
is of scientific interest. For example, in a longitudinal study we could be inter-
ested in assessing whether the rate of change differs between two treatment
groups, in other words, the treatment-by-group interaction. The standard al-
gorithm does not take interactions into account, so the interactions of interest
should be added to the imputation model. Interactions can be added using
passive imputation. An alternative is to impute the data in separate groups.
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FIGURE 1.3
Three different imputation models to impute weight/height ratio. The rela-
tion between the weight/height ratio and height is not respected under “just
another variable” (JAV). Both passive methods yield imputations that are
close to the observed data. “Passive 2” does not allow for models in which
weight/height ratio and BMI are simultaneous predictors.

In some cases it makes sense to restrict the imputations, possibly condi-
tional on other data. For example, if we impute ’male’, we can skip questions
particular to females, e.g. about pregnancy. Such conditional imputation could
reset the imputed data in the pregnancy block to missing, thus imputing only
part depending on gender. Of course, appropriate care is needed when using
the pregnancy variables are used later as a predictor to restrict to females.
Such alterations to the imputations can be implemented easily within a FCS
framework by post-processing imputations within the iterative algorithm.

Compositional data are another form of derived data, and often occur in
household and business surveys. Sometimes we know that a set of variables
should add up to a given total. If one of the additive terms is missing, we can
directly calculate its value with certainty by deducting the known terms from
the total. However, if two additive terms are missing, imputing one of these
terms uses the available one degree of freedom, and hence implicitly determines
the other term. Imputation of compositional data has only recently received
attention (Tempelman, 2007; Hron et al., 2010; de Waal et al., 2011), and can
be implemented conveniently with an FCS framework. See section 5.4.5 in van
Buuren (2012) for an illustration of the main idea.

Nonlinear relations are often modeled using a linear model by adding
quadratic or cubic terms of the explanatory variables. Creating imputed values
that adhere to quadratic relation poses some challenges. Current imputation
methodology either preserves the quadratic relation in the data and biases
the estimates of interest, or provides unbiased estimates but does not preserve
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the quadratic relation (von Hippel, 2009; White et al., 2011a). An alternative
approach that aims to define a polynomial combination Z as Z = Y β1 +Y 2β2
for some β1 and β2. The idea is to impute Z instead of Y and Y 2, followed by
a decomposition of the imputed data Z into components Y and Y 2. Section
5.4.6 in van Buuren (2012) provided an algorithm that does these calculations.
Simulations indicate that the quadratic method worked well in a variety of sit-
uations (Vink and van Buuren, 2013).

In all cases, feedback between different versions of the same variable should
be prevented. Failing to do so may may lock up the MICE algorithm or produce
erratic imputations.

1.6.6 Visit sequence

The MICE algorithm as described in section 1.5.2 imputes incomplete vari-
ables in the data from left to right. Theoretically, the visit sequence of the
MICE algorithm is irrelevant as long as each column is visited often enough,
though some schemes are more efficient than others. In practice, there are
small order effects of the MICE algorithm, where the parameter estimates
depend on the sequence of the variables. To date, there is little evidence that
this matters in practice, even for clearly incompatible imputation models (van
Buuren et al., 2006). For monotone missing data, convergence is immediate
if variables are ordered according to their missing data rate. Rather than re-
ordering the data itself, it is more convenient to change the visit sequence of
the algorithm.

It may also be useful to visit a given variable more than once within the
same iteration. For example, weight/height ratio can be recalculated imme-
diately after the missing data in weight and after the missing data in height
are imputed. This ensures that the weight/height ratio remains properly syn-
chronized with both weight and height at all times.

1.7 Diagnostics

An important and unique advantage of multiple imputation over other sta-
tistical techniques is that we can easily infer the plausibility of the statistical
(imputation) model. This is straightforward because the imputation model
produces data, and we are very well equipped to look at data.

One of the best tools for assessing the plausibility of imputations is to
study the discrepancy between the observed and imputed data. The idea is
that high quality imputed data will have distributions similar to the observed
data. Except under MCAR, the distributions do not need to be identical, as
strong MAR mechanisms may induce systematic differences between the two
distributions. However, any dramatic differences between the imputed and
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observed data (such as seeing a body mass index of 300 in the imputed data)
should certainly alert us to the possibility that something is wrong with the
imputation model. It is reassuring when the synthetic data could have been
real values had they not been missing.

Suppose we compare density estimates of the observed and imputed data.
Some type of discrepancies that are of interest are

• the points have different means;

• the points have different spreads;

• the points have different scales;

• the points have different relations;

• the points do not overlap and they defy common sense.

Such differences between the densities data may suggest a problem that needs
to be further checked. Other useful graphic representation include the box
plot, the stripplot, the histogram, and the scattergram of variables, stratified
according to whether the data are real or imputed.

Figure 1.4 shows kernel density estimates of imputed and observed data.
In this case, the distributions match up well. Other imputation diagnostics
have been suggested by Gelman et al. (2005), Raghunathan and Bondarenko
(2007), Abayomi et al. (2008) and Su et al. (2011).

Compared to diagnostic methods for conventional statistical models, im-
putation comes with the advantage that we can directly compare the observed
and imputed values. Unfortunately, diagnostics are currently underused. One
reason is that not all software properly supports diagnostics. Another reason
is that the imputer may put too much trust into the appropriateness of the
defaults of the software for the data at hand. Absurd imputations are however
easy to spot by simple methods, and should be repaired before attempting
complete-data analysis.

1.8 Conclusion

FCS has rapidly been adopted by applied researchers in many branches of
science. FCS remains close to the data and is easy to apply. The relevant
software is now widespread, and available in all major statistical packages.
Appendix A of van Buuren (2012) is an overview of software for FCS.

The technology has now evolved into the standard way of creating multiple
imputations. Of course, there are still open issues, and more experience is
needed with practical application of FCS. Nevertheless, FCS is an open and
modular technology that will continue to attract the attention of researchers
who want to solve their missing data problems.
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FIGURE 1.4
Kernel density estimates for the marginal distributions of the observed data
(thick line) and the m = 5 densities per variable calculated from the imputed
data (thin lines).
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