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Multiple imputation methods properly account for the uncertainty of miss-
ing data. One of those methods for creating multiple imputations is pre-
dictive mean matching (PMM), a general purpose method. Little is
known about the performance of PMM in imputing non-normal
semicontinuous data (skewed data with a point mass at a certain value
and otherwise continuously distributed). We investigate the performance
of PMM as well as dedicated methods for imputing semicontinuous data
by performing simulation studies under univariate and multivariate
missingness mechanisms. We also investigate the performance on
real-life datasets.We conclude that PMMperformance is at least as good
as the investigated dedicated methods for imputing semicontinuous
data and, in contrast to other methods, is the only method that yields
plausible imputations and preserves the original data distributions.
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1 Introduction

Semicontinuous variables consist of a (usually fairly large) proportion of responses with
point masses that are fixed at some value and a continuous distribution among the
remaining responses. Variables of this type are often collected in economic applications
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but can also be found in medical applications. Examples of semicontinuous variables
with point masses at zero are income from employment, number of employees, or
bacterial counts. Semicontinuous variables differ from censored and truncated variables
in that the data represented by the zeros are bona fide and valid, as opposed to the data
being proxies for negative values or missing responses (Schafer and Olsen, 1999).

1.1 Imputation methods for semicontinuous data

In the past decades, the field of imputation has made a major advance. Many model-
based imputation procedures have been developed for multivariate continuous and
categorical data (Rubin, 1987; Schafer, 1997; Little and Rubin, 2002). Univariate
models for modeling semicontinuous data have been developed as well as the Tobit
model (Tobin, 1958; Amemiya, 1984) and selection models (Heckman, 1974, 1976).
The two-part model seems to be particularly interesting for modeling semicontinuous
data. This model presents the data as a two-part mixture of a normal distribution and
a point mass (Schafer and Olsen, 1999; Olsen and Schafer, 2001), thereby
decomposing the semicontinuous observations into two variables that can be modeled
in succession. The two-part model can benefit from transforming the continuous part
of the data to normality (White, Royston and Wood, 2011).
Javaras and Van Dyk (2003) introduced the blocked general location model

(BGLoM), designed for imputing semicontinuous variables. The BGLoM incorporates
a two-part model in the general location model. Expectation–maximization and data
augmentation algorithms for generating imputations under the BGLoM have been
introduced by Javaras and Van Dyk (2003).
The methods described earlier are based on the multivariate normal distribution.

The normal distribution, however, may not accurately describe the data, potentially
leading to unsatisfactory solutions (Van Buuren, 2012), which stresses the need for
a method without distributional assumptions.
Nonparametric techniques, such as hot-deck methods, form an alternative class of

methods to create imputations. In hot-deck methods, the missing data are imputed by
finding a similar but observed record in the same dataset, whose observed data serve
as a donor for the record with the missing value. Similarity can be expressed, for
example, through the nearest-neighbor principle, which aims to find the best match
for a certain record’s missing value, based on other values in that same record.
A well-known and widely used method for generating hot-deck imputations is

predictive mean matching (PMM) (Little, 1988), which imputes missing values by
means of the nearest-neighbor donor with distance based on the expected values of
the missing variables conditional on the observed covariates.
Yu, Burton and Rivero-Arias (2007) investigated general purpose imputation

software packages for multiply imputing semicontinuous data. Among the software in-
vestigated were routines and packages for SAS [PROC MI, PROC MIANALYZE, and
IVEware (Raghunathan, Solenberger and Van Hoewyk, 2002)], R [mice (Van Buuren
andGroothuis-Oudshoorn, 2011) and aregImpute], and Stata [ice (Royston, 2005)].
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They concluded that procedures involving PMM performed similar to each other and
better than the procedures that assumed normal distributions. PMM not only yielded
acceptable estimates but also managed to maintain underlying distributions of the data
(Heeringa, Little and Raghunathan, 2002; Yu et al., 2007).
Although the research by Yu et al. (2007) is useful, it yields only limited insight in

the reasons why PMM works for semicontinuous data. Yu et al. (2007) focused on
readily available software implementations, setting aside methods specifically
designed for semicontinuously distributed data (Schafer and Olsen, 1999; Olsen and
Schafer, 2001; Javaras and Van Dyk, 2003). Even the procedures implementing
PMM had different performances, indicating that a distinction must be made between
methods and software implementations.
The list of software, as described by Yu et al. (2007), is outdated. New algorithms

and packages with support for semicontinuous data have emerged, such as the
R-packages mi (Su et al., 2011) and VIM (Templ, Kowarik and Filzmoser, 2011). Both
methods use an approach to semicontinuous data that is based on the two-part model.
mi, for example, uses a two-part model where the continuous part is imputed based
on log-transformed data. The iterative robust model-based imputation (irmi)
algorithm from the package VIM mimics the functionality of IVEware (Raghunathan
et al., 2002) but claims several improvements with respect to the robustness of the
imputed values and the stability of the initialized values (Templ et al., 2011).

1.2 Goals of this research

Little is known about the practical applicability of PMM on semicontinuous data,
and how the method compares to techniques that are specifically designed to handle
these types of data. Certain characteristics, such as sample size, skewness, the percent-
age of zeros, and the number of predictors, as well as the strength of relations in the
data, may play a vital role in the performance of PMM.
We investigate how PMM compares to dedicated methods for imputing

semicontinuous data. We thereby concentrate on a comparison between PMM, the
two-part model, the BGLoM, and the algorithms mi and irmi. More in particular,
we investigate how performance is affected by skewness, sample size, the amount of
zeros, the percentage missingness, and the relations in the data. We also look into
the effect of the missing data mechanism on imputation methods for imputing
semicontinuous data. We investigate the aforementioned methods in the presence of
univariate and multivariate missingness. And, finally, we wonder: is PMM at least
as good as a dedicated method when imputing semicontinuous data?

2 Imputation methods

2.1 Notation and preliminaries

Let Y= (Yobs,Ymis) be an incomplete semicontinuous variable with n sample units,
whereYobs andYmis denote the observed values and themissing values inY, respectively.
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Further, X= (X1,…,Xj) is a set of j fully observed covariates, whereXobs andXmis corre-
spond to the observed missing parts inY. We use notation nobs for the number of sample
units with observed values of Y and nmis for the number of sample units with missing
values. Finally, let R be a response indicator that is 1 if Y is observed and 0 if Y is
missing. We must note that we limit our research to the univariate case, although problems
could be approached iteratively to solve themultivariate problem,without loss of generality.
To impute missing values in Y and to asses variances and confidence intervals for

estimators based on the imputed data, we use multiple imputation mimethods. These
methods can be described by a Bayesian approach. In case of a parametric model for
the variable to be imputed, the parameters of the model are viewed as random
variables to which a prior distribution is assigned. Most commonly, in this context,
an uninformative prior is used. Then, taking the observed data into account, the
information on the parameters is updated, leading to the posterior distribution for
the parameter vector. For the monotone missing data considered here, Multiple
imputations for the missing values can be obtained by first drawing a value from
the posterior distribution of the parameter vector and then drawing a value for each
missing data point from the distribution of the missing data given the drawn value of
the parameter vector and the observed data. When this procedure is repeated, say m
times, m multiple imputations are obtained for each missing value that are draws
from the posterior predictive distribution of the missing data.
The imputation methods discussed in the remainder of this section make use of two

parametric models, the linear regression model and the logistic regression model. The
linear regression model for a target variable Y can be written as

Yi ¼ XT
i β þ ϵi;

with Xi the vector of values from the j covariates for unit i, β the corresponding regres-
sion coefficient vector, and ϵi a normally distributed random error with expectation
zero and variance σ2. Parameter estimates β̂, ϵ̂i, and σ̂2 of this model can be obtained
by ordinary least square using the units for which both Y and X are observed. Using
uninformative priors for β and σ2, the posterior distribution for β is Nð β̂;Vð β̂ÞÞ, that
is, normal with mean β̂ and covariance matrix Vð β̂Þ ¼ σ2 XT

obsXobs
� ��1

, and the poste-
rior distribution for σ2 is given by ϵ̂T ϵ̂=A, with A a chi-square variate with nobs� r
degrees of freedom. A draw from the posterior predictive distribution for a missing
value for unit i can be obtained by drawing values σ2 * and β* from their posterior
distributions and then drawing a value for Ymis,i from N XT

i β
�;σ2�� �

.
The logistic regression model for a binary (0,1) target variableW can be expressed as

log
πi

1� πi
¼ XT

i γ;

with γ the corresponding regression coefficient vector and πi the probability of observing
Wi=1 or, equivalently, πi ¼ E Wi½ �. An expression for πi in terms of the linear predictor
XT
i γ is obtained from the inverse logit transformation: πi ¼ expit XT

i γ
� � ¼

exp XT
i γ

� �
= 1þ exp XT

i γ
� �� �

. Using an uninformative prior for γ, the corresponding
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posterior distribution is approximately N γ̂; V̂ γ̂ð Þ� �
with γ̂ the maximum likelihood

estimator for γ and V̂ γ̂ð Þ the associated covariance matrix. A draw from the posterior
predictive distribution of a missing valueWmis,i can be obtained by first drawing a value
γ* from the posterior distribution for γ and then drawing a value W�

i from a Bernoulli
distribution with parameter π� ¼ expit XT

i γ
�� �
.

2.2 Predictive mean matching

Multiply imputing Ymis by means of PMM is performed by the following algorithm:

1. Use linear regression of Yobs given Xobs to estimate β̂ , σ̂, and ε̂ by means of
ordinary least squares.

2. Draw σ2 * as σ2� ¼ ε̂T ε̂=A , where A is a χ2 variate with nobs� r degrees of
freedom.

3. Draw β* from a multivariate normal distribution centered at β̂ with covariance
matrix σ2� XT

obsXobs
� ��1

.
4. Calculate Ŷ obs ¼ Xobs β̂ and Ŷmis ¼ Xmis β*.
5. For each Ŷmis;i, find Δ ¼ jŶ obs � Ŷmis;ij.
6. Randomly sample one value from (Δ(1), Δ(2), Δ(3)), where Δ(1), Δ(2), and Δ(3) are

the three smallest elements in Δ, respectively, and take the corresponding Yobs,i

as the imputation.
7. Repeat steps 1–6 m times, each time saving the completed dataset.

The default of the function mice in the R-package mice performs multiple imputation
(m=5) according to the description of this algorithm. The regression function mi.pmm

in mi also performs PMM imputation but calculates Δ ¼ minjŶ obs � Ŷmis;ij and selects
the corresponding Yobs,i as the imputation.

2.3 Two-part imputation

Let Y be decomposed into two variables (Wi, Zi), where Yi denotes the ith value in
Y, giving

Wi ¼
1 if Yi ≠ 0

0 if Yi ¼ 0

�
; (1)

Zi ¼
g Yið Þ if Yi ≠ 0

0 if Yi ¼ 0

�
; (2)

where g is a monotonically increasing function, chosen such that the non-zero
values in Yi are approximately normally distributed (Manning et al., 1981; Duan
et al., 1983; Schafer and Olsen, 1999). Multiply imputing Ymis by means of two-
part multiple imputation can be done by the following algorithm as described by
Schafer and Olsen (1999):
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1. Use logistic regression on Wobs given Xobs to estimate γ̂, V̂ γ̂ð Þ.
2. Draw γ* from a multivariate normal distribution centered at γ̂ with covariance

matrix V̂ γ̂ð Þ.
3. DrawWi from a Bernoulli distribution with probability π�i ¼ expit XT

i γ
�� �

inde-
pendently for Wmis.

4. For all Wi≠ 0, use linear regression of Zobs given Xobs to estimate the least
squares estimates β̂ and residuals ε̂i ¼ Zi � XT

i β̂ where i ∈ obs.
5. Draw a random value of σ2 * as σ2� ¼ ε̂T ε̂=A, where A is a χ2 variate with

nobs.1� r degrees of freedom, with nobs.1 the number of observed elements
given Wi= 1.

6. Draw β* from a multivariate normal distribution centered at β̂ with covari-
ance matrix σ2� XT

obsXobs
� ��1

.
7. Draw Zi from a normal distribution with mean μ�

i ¼ XT
i β

� and variance σ2 *

independently for all Zmis.
8. Set Yi=0 if Wi=0, and Yi= g� 1(Zi) if Wi=1 for all Ymis.
9. Repeat the steps m times, each time saving the completed dataset. Note that

steps 1 and 4 do not change and need to be performed only once. Further,
steps 4–7 are performed on the subset Wi=1.

A list of software that incorporates a two-part model includes (but is not limited to)
IVEware, mi, and VIM. Note that these software packages may use different
approaches to the two-part model as well as different algorithms, but all use a two-part
approach. For example, mi log-transforms the continuous part of the data, and the VIM
routine irmi uses robust estimation methods.

2.4 Imputing through the BGLoM

The BGLoM by Javaras and VanDyk (2003) extends the general locationmodel (Olkin
and Tate, 1961) by incorporating a two-level model. The precise model is too intricately
detailed to be summarized here. Instead, well-documented expectation–maximization
and data augmentation algorithms can be found in Javaras and Van Dyk (2003). We
use software and script, kindly provided by the authors, in our simulations.

3 Univariate simulation

In order to compare the performance of the imputation methods at hand, we use a
design-based approach wherein we create a finite population from which we repeatedly
sample. We make use of a design-based simulation because there are no statistical
models that would help us generate multivariate semi-continuous data with given
dependencies among the variables and fixed underlying univariate and multivariate
properties. Consequently, we have chosen to generate data with known properties,
and subsample from these. This procedure is popular in official statistics [see, e.g.,
Chambers and Clark (2012); Alfons, Templ and Filzmoser (2010a, 2010b)] and is often
used in the case of performance assessment of imputation procedures in this field.
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3.1 Generating populations

We separate the simulations on the level of the point mass and generate two
populations. Both populations have size N=50, 000, but the populations differ in
the size of the point mass: 30% and 50% point masses at zero, respectively. Note that
when the size of the point mass changes, estimates such as the mean, median, and var-
iances change as well.

Step 1: Generating semicontinuous data

For each population, we start by creating a normally distributed variable Q∼N(5,1)
to which we assign a point mass at zero by drawing from a binomial distribution
with a 30 (population 1) or 50 (population 2) percent chance for any value in Q to
take on the point mass. Please note that Q is now a semicontinuous variable wherein
the continuous part is normally distributed. The zeros in Q are initially completely
at random, but a dependent relation with the covariate will be induced by
transformation.

Step 2: Generating covariates

In order to measure the influence of the relation with the covariate, we want to
create covariates with varying correlations with the simulation population Q. To
do so, we defined the correlation matrix for four covariates and the semicontinuous
variable Q as

RQX ¼

Q X1 X2 X3 X4

1

0:80 1

0:50 0:4 1

0:30 0:24 0:15 1

0 0 0 0 1

2
6666666664

3
7777777775

:

Using these correlations, we constructed standard deviation scores (SDSXij ), with
mean zero, for the covariates according to

SDSXij ¼ SDSQi
� ρQXj

þ ϵi;

where ρQXj
is the correlation between Q and Xj obtained from RQX, SDSQi

is the stan-
dardized score of Q (with mean zero and standard deviation 1), and ϵi is a random
draw from the normal distribution Nð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2YXj

q
Þ.

Step 3: Generating target variables

To create semicontinuous target variables, we used the following transformations
of Q:
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Y1 ¼ Q

Y2 ¼ Q2=max Qf g
Y3 ¼ Q4=max Q3

� 	
Y4 ¼ Q8=max Q7

� 	
Y5 ¼ Q12=max Q11

� 	
;

thereby varying the degree of skewness while keeping the variables in the same scale.
For example, the continuous parts in Y1 and Y5 are normally distributed and
extremely skewed, respectively. Creating transformed skewed variables also introduces
extreme values, which in turn may severely impair a methods imputation performance.
Figure 1 displays histograms for Y1 through Y5 with a 50% point mass at zero.
Combining the set of transformed variables Y= (Y1,…,Y5) with the variables in

X= (X1,…,X4) provides us with a dataset with different bivariate relations between
any of the variables in Y and the covariates X. Moreover, because of the different
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Fig. 1. Generated semicontinuous variables (Y1�Y5) with a point mass at 50%.
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degrees of skewness between the variables in Y, the bivariate relations between any of
the variables in X and the target variables Y also differ. For example, the bivariate
relations between X1 and Y1 are stronger than the relations between X2 and Y1, and
the relations between X1 and Y2 are stronger than the relations between X1 and Y3.
Please note that we investigate the univariate problem, meaning that we impute each
of the semicontinuous variables (e.g., Y1) based on one of the covariates (e.g., X1).

3.2 Sampling from the population

To investigate the performance of the methods under different sample sizes, we
randomly sample from the combined set of Y and X for each population. We used
samples of size 100, 500, and 1000, respectively. Other sampling schemes are beyond
the scope of this research, because we are mainly interested in the missing data process
and not in the sampling process.

3.3 Generating missingness

Because we investigate the univariate case, we may impose the missingness for each
sample in all Y simultaneously. We created missingness in our samples according to
the following missing at random (MAR) mechanism:

P R ¼ 0jYobs; Ymis;Xj

� � ¼ P R ¼ 0jYobs;Xj

� �
by using a random draw from a binomial distribution of the same length as Y and of
size 1 with missingness probability equal to the inverse logit

P R ¼ 0ð Þ ¼ ea

1þ eað Þ :

In the case of left-tailed MAR missingness, a ¼ �Xj þ Xij

� �
=σXj gives 50%

missingness, whereσXj indicates the standard deviation of variable Xj. For right-tailed

MAR missingness, this can be achieved by choosing a ¼ Xj � Xij

� �
=σXj . Choosing

a ¼ 0:75� Xj � Xij

� �
=σXj

� �
, or a ¼ �0:75þ Xj � Xij

� �
=σXj

� �
, gives 50% centered

MARmissingness or 50% tailedMARmissingness, respectively. Adding or subtracting
a constant moves the sigmoid curve, which results in different missingness proportions.
The samples, in which missingness was imposed, were imputed and evaluated.

Separate simulations were performed for 25% and 50% missingness per variable.
All simulations have been carried out in R 2.13 and are repeated 100 times. The
function mice(data, method=“pmm”) from the R-package mice (version 2.13)
(Van Buuren and Groothuis-Oudshoorn, 2011) was used for PMM.
A custom adaptation of mice was developed for two-part imputation, which uses

mice(data) with method specification method=“logreg” for the binary indica-
tor and method=“norm” for the continuous part. After the final iteration of the
algorithm, a postprocessing command is parsed, which sets all zeros from the imputed
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binary indicator to zeros in the continuous data. The functionmi() from theR-package
mi (version 0.09-18) was used to impute the object, which has been preprocessed by the
function mi.preprocess(data). Finally, the function irmi(data) with
semicontinuous columns indicated as mixed from the R-package VIM (version 3.0.1)
was used for imputations based on the irmi algorithm.

3.4 Evaluation of imputations

In the case of a simulated dataset, evaluations can be performed because ‘truth’ is
known. In case of a real-life dataset, containing observed missingness, this cannot
be performed, because the actual values are unknown. It is therefore necessary to
check the imputations in real-life datasets by means of a standard of reasonability:
differences between observed and imputed values and distributional shapes can be
checked to see whether they make sense given the particular dataset [see Abayomi,
Gelman and Levy (2008) for more information on this subject].
We evaluate the quality of imputations by assessing the following criteria: bias of

the mean, median, and correlation, coverage of the 95% confidence interval of the
mean, the size of the point mass, preservation of distributional shapes, and the
plausibility of the imputed data. We assess plausibility by looking whether the
imputed values are realistic given the observed data, for example, could they have
been observed if the data were not missing.

4 Univariate results

4.1 Bias of the mean

Tables 1 and 2 display biases in the mean for Y1 through Y2 after imputation given
the covariates X1 and X4, respectively. Bias of the mean is defined as the difference
between the recovered mean and the population mean. From these tables, it can be
seen that PMM and the two-part model estimate the mean very accurately. The bias
from the population mean for these methods is very low, regardless of the varying
simulation conditions. However, the BGLoM, mi, and irmi seem somewhat
biased in certain cases.
The bias of the BGLoM depends on the missingness mechanism and is especially

visible in the case of left-tailed MAR missingness. Also, observe that the bias depends
on the size of the point mass. It seems that the BGLoM overestimates the smaller
point masses, thereby making the data more semicontinuous than it should be.
Especially when combined with a ‘weaker’ covariate, mean biases for the BGLoM
become much larger when the size of the point mass decreases.
The bias of mi is larger for right-tailed and left-tailed MAR missingness, although

this difference disappears when the variable becomes more skewed. For the non-
correlating covariate (X4), all biases for mi are very small.

70 G. Vink et al.

© 2014 The Authors. Statistica Neerlandica © 2014 VVS.



T
ab

le
1.

U
ni
va
ri
at
e
si
m
ul
at
io
n
re
su
lt
s
fo
r
X
1
ov

er
10
0
si
m
ul
at
io
ns

2-
P
ar
t

B
G
L
oM

P
M
M

M
I

IR
M
I

pm
m
ar

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

Y
1

0.
3

L
ef
t

0.
00

0.
96

0.
55

0.
30

�0
.3
8

0.
20

0.
56

0.
38

�0
.0
1

0.
97

0.
55

0.
30

0.
19

0.
88

0.
81

0.
26

�0
.0
4

0.
79

0.
44

0.
31

0.
3

M
id

�0
.0
4

0.
95

0.
55

0.
31

�0
.0
8

0.
97

0.
58

0.
32

�0
.0
1

0.
94

0.
51

0.
30

�0
.0
5

0.
91

0.
62

0.
32

0.
07

0.
86

0.
43

0.
29

0.
3

R
ig
ht

�0
.0
2

0.
96

0.
53

0.
31

0.
05

0.
99

0.
80

0.
29

�0
.0
1

0.
93

0.
49

0.
30

�0
.1
0

0.
84

0.
60

0.
32

0.
03

0.
91

0.
43

0.
29

0.
3

T
ai
l

0.
02

0.
95

0.
50

0.
30

�0
.1
3

0.
91

0.
58

0.
33

�0
.0
2

0.
94

0.
49

0.
30

0.
03

0.
95

0.
60

0.
29

�0
.0
2

0.
90

0.
44

0.
31

0.
5

L
ef
t

0.
03

0.
99

0.
55

0.
49

�0
.1
9

0.
79

0.
53

0.
54

0.
00

0.
95

0.
53

0.
50

0.
13

0.
93

0.
67

0.
47

�0
.0
9

0.
79

0.
46

0.
52

0.
5

M
id

0.
03

0.
93

0.
58

0.
49

0.
01

0.
94

0.
61

0.
50

0.
00

0.
89

0.
54

0.
50

0.
01

0.
95

0.
65

0.
50

0.
02

0.
82

0.
46

0.
50

0.
5

R
ig
ht

�0
.0
2

0.
95

0.
59

0.
50

0.
13

0.
96

0.
95

0.
46

0.
00

0.
95

0.
55

0.
50

�0
.1
9

0.
85

0.
79

0.
53

0.
04

0.
89

0.
45

0.
49

0.
5

T
ai
l

�0
.0
1

0.
95

0.
52

0.
50

0.
01

0.
90

0.
58

0.
50

0.
00

0.
97

0.
52

0.
50

�0
.0
3

0.
94

0.
58

0.
50

�0
.0
1

0.
94

0.
46

0.
50

Y
2

0.
3

L
ef
t

0.
00

0.
95

0.
35

0.
30

�0
.2
0

0.
34

0.
34

0.
38

�0
.0
1

0.
91

0.
34

0.
30

0.
10

0.
90

0.
44

0.
26

�0
.0
2

0.
90

0.
29

0.
31

0.
3

M
id

�0
.0
3

0.
96

0.
36

0.
31

�0
.0
4

0.
97

0.
40

0.
32

0.
00

0.
97

0.
34

0.
30

�0
.0
1

0.
95

0.
43

0.
32

0.
04

0.
86

0.
28

0.
29

0.
3

R
ig
ht

�0
.0
2

0.
94

0.
37

0.
31

�0
.0
1

0.
96

0.
68

0.
29

0.
00

0.
91

0.
36

0.
30

�0
.0
6

0.
91

0.
51

0.
32

0.
01

0.
84

0.
27

0.
29

0.
3

T
ai
l

0.
00

0.
96

0.
33

0.
30

�0
.0
7

0.
91

0.
39

0.
33

�0
.0
2

0.
92

0.
33

0.
30

0.
02

0.
95

0.
44

0.
29

�0
.0
1

0.
90

0.
28

0.
31

0.
5

L
ef
t

0.
02

0.
98

0.
33

0.
49

�0
.1
0

0.
83

0.
32

0.
54

0.
00

0.
98

0.
33

0.
50

0.
06

0.
93

0.
42

0.
47

�0
.0
4

0.
80

0.
29

0.
52

0.
5

M
id

0.
01

0.
97

0.
36

0.
49

0.
00

0.
91

0.
38

0.
50

0.
00

0.
90

0.
34

0.
50

0.
02

0.
92

0.
41

0.
50

0.
02

0.
88

0.
29

0.
50

0.
5

R
ig
ht

�0
.0
1

0.
98

0.
40

0.
50

0.
05

1.
00

0.
84

0.
46

0.
00

0.
96

0.
38

0.
50

�0
.1
3

0.
76

0.
53

0.
53

0.
01

0.
87

0.
27

0.
49

0.
5

T
ai
l

�0
.0
1

0.
94

0.
35

0.
50

0.
00

0.
99

0.
41

0.
50

0.
00

0.
94

0.
34

0.
50

�0
.0
2

0.
95

0.
41

0.
50

0.
00

0.
94

0.
28

0.
50

Y
3

0.
3

L
ef
t

0.
00

0.
94

0.
18

0.
30

�0
.0
6

0.
69

0.
17

0.
38

0.
00

0.
94

0.
17

0.
30

0.
02

1.
00

0.
11

0.
26

�0
.0
1

0.
96

0.
15

0.
31

0.
3

M
id

�0
.0
1

0.
96

0.
20

0.
31

�0
.0
1

0.
99

0.
25

0.
32

0.
00

0.
97

0.
18

0.
30

0.
02

0.
99

0.
16

0.
32

0.
01

0.
91

0.
15

0.
29

0.
3

R
ig
ht

�0
.0
2

0.
85

0.
20

0.
31

�0
.0
1

1.
00

0.
55

0.
29

0.
00

0.
96

0.
22

0.
30

0.
03

0.
99

0.
31

0.
32

�0
.0
2

0.
76

0.
13

0.
29

0.
3

T
ai
l

�0
.0
1

0.
94

0.
18

0.
30

�0
.0
2

0.
99

0.
22

0.
33

�0
.0
1

0.
86

0.
18

0.
30

0.
03

0.
99

0.
20

0.
29

�0
.0
1

0.
85

0.
14

0.
31

0.
5

L
ef
t

0.
00

0.
98

0.
16

0.
49

�0
.0
3

0.
82

0.
14

0.
54

0.
00

0.
96

0.
15

0.
50

0.
01

0.
96

0.
07

0.
47

�0
.0
1

0.
88

0.
13

0.
52

0.
5

M
id

0.
01

0.
93

0.
18

0.
49

0.
00

0.
97

0.
21

0.
50

0.
00

0.
94

0.
16

0.
50

0.
02

0.
97

0.
13

0.
50

0.
01

0.
87

0.
14

0.
50

0.
5

R
ig
ht

�0
.0
1

0.
88

0.
20

0.
50

0.
00

1.
00

0.
78

0.
46

0.
00

0.
86

0.
19

0.
50

0.
02

0.
97

0.
25

0.
53

�0
.0
2

0.
74

0.
11

0.
49

0.
5

T
ai
l

�0
.0
1

0.
91

0.
17

0.
50

0.
01

1.
00

0.
27

0.
50

0.
00

0.
92

0.
17

0.
50

0.
02

0.
99

0.
21

0.
50

�0
.0
1

0.
88

0.
13

0.
50

N
ot
es
:T

he
ta
bl
e
de
pi
ct
s
bi
as

of
th
e
m
ea
n,

co
ve
ra
ge

ra
te

fo
r
th
e
m
ea
n,

C
I
w
id
th
,a

nd
th
e
es
ti
m
at
ed

pe
rc
en
ta
ge

of
ze
ro
s
ob

ta
in
ed

us
in
g
di
ff
er
en
t
im

pu
ta
ti
on

m
et
ho

ds
an

d
di
ff
er
en
t
m
is
si
ng

ne
ss

m
ec
ha

ni
sm

s
fo
r
se
m
ic
on

ti
nu

ou
s
va
ri
ab

le
s
Y
1
th
ro
ug

h
Y
3.
A
ll
ca
se
s
re
pr
es
en
t
a
sa
m
pl
e
si
ze

of
n
=
50
0
an

d
50
%

M
A
R

m
is
si
ng

ne
ss
.

PMM imputation of semicontinuous variables 71

© 2014 The Authors. Statistica Neerlandica © 2014 VVS.



T
ab

le
2.

U
ni
va
ri
at
e
si
m
ul
at
io
n
re
su
lt
s
fo
r
X
4
ov

er
10
0
si
m
ul
at
io
ns

2-
P
ar
t

B
G
L
oM

P
M
M

M
I

IR
M
I

pm
m
ar

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

bi
as

co
v

ci
w

ze
ro

Y
1

0.
3

L
ef
t

0.
02

0.
98

0.
81

0.
30

�0
.5
1

0.
59

1.
15

0.
40

0.
00

0.
97

1.
38

0.
30

�0
.0
1

0.
94

0.
88

0.
31

0.
69

0.
00

0.
36

0.
15

0.
3

M
id

0.
00

0.
96

0.
69

0.
30

�0
.4
8

0.
63

1.
07

0.
40

0.
01

0.
91

1.
21

0.
30

0.
00

0.
97

0.
81

0.
30

0.
70

0.
00

0.
36

0.
16

0.
3

R
ig
ht

�0
.0
1

0.
92

0.
76

0.
31

�0
.6
0

0.
39

1.
11

0.
42

0.
03

0.
88

1.
47

0.
30

0.
04

0.
98

0.
93

0.
30

0.
68

0.
00

0.
36

0.
15

0.
3

T
ai
l

0.
01

0.
94

0.
70

0.
30

�0
.5
0

0.
55

1.
03

0.
40

0.
05

0.
93

1.
08

0.
29

0.
01

0.
94

0.
85

0.
30

0.
73

0.
00

0.
36

0.
15

0.
5

L
ef
t

0.
01

0.
96

0.
83

0.
50

0.
05

1.
00

1.
08

0.
49

�0
.0
5

0.
91

1.
53

0.
51

0.
00

0.
96

0.
99

0.
50

�0
.2
0

0.
00

0.
40

0.
53

0.
5

M
id

�0
.0
1

0.
93

0.
73

0.
50

�0
.0
2

0.
96

1.
00

0.
50

�0
.0
1

0.
94

1.
54

0.
50

0.
00

0.
90

0.
76

0.
50

0.
15

0.
03

0.
40

0.
47

0.
5

R
ig
ht

0.
01

0.
91

0.
82

0.
50

0.
01

1.
00

1.
32

0.
49

�0
.0
3

0.
89

1.
73

0.
50

�0
.0
1

0.
94

0.
97

0.
50

�0
.0
3

0.
00

0.
40

0.
50

0.
5

T
ai
l

0.
01

0.
96

0.
72

0.
50

�0
.0
1

1.
00

1.
09

0.
50

0.
03

0.
88

1.
22

0.
49

0.
00

0.
96

0.
87

0.
50

�0
.0
2

0.
49

0.
43

0.
50

Y
2

0.
3

L
ef
t

0.
02

0.
96

0.
52

0.
30

�0
.3
0

0.
59

0.
66

0.
40

�0
.0
2

0.
89

0.
83

0.
31

�0
.0
1

0.
94

0.
60

0.
31

0.
34

0.
00

0.
26

0.
15

0.
3

M
id

0.
00

0.
94

0.
43

0.
30

�0
.2
7

0.
52

0.
63

0.
40

�0
.0
2

0.
89

0.
84

0.
30

0.
00

0.
94

0.
54

0.
30

0.
38

0.
00

0.
26

0.
16

0.
3

R
ig
ht

0.
00

0.
95

0.
50

0.
31

�0
.3
4

0.
39

0.
65

0.
42

0.
01

0.
91

0.
99

0.
30

0.
03

0.
95

0.
67

0.
30

0.
34

0.
01

0.
26

0.
15

0.
3

T
ai
l

0.
00

0.
90

0.
44

0.
30

�0
.3
0

0.
57

0.
63

0.
40

0.
03

0.
93

0.
80

0.
29

0.
01

0.
98

0.
55

0.
30

0.
39

0.
00

0.
27

0.
15

0.
5

L
ef
t

0.
00

0.
98

0.
52

0.
50

0.
03

1.
00

0.
71

0.
49

�0
.0
1

0.
89

0.
90

0.
50

0.
00

0.
96

0.
59

0.
50

�0
.1
3

0.
00

0.
25

0.
53

0.
5

M
id

�0
.0
1

0.
92

0.
45

0.
50

�0
.0
2

0.
92

0.
59

0.
50

0.
01

0.
91

1.
04

0.
50

0.
00

0.
94

0.
56

0.
50

0.
07

0.
03

0.
26

0.
47

0.
5

R
ig
ht

0.
01

0.
93

0.
52

0.
50

�0
.0
1

0.
98

0.
80

0.
49

�0
.0
2

0.
92

0.
97

0.
50

0.
01

0.
97

0.
62

0.
50

�0
.0
3

0.
00

0.
26

0.
50

0.
5

T
ai
l

0.
00

0.
95

0.
44

0.
50

�0
.0
3

1.
00

0.
61

0.
50

0.
02

0.
91

0.
72

0.
49

0.
02

0.
97

0.
57

0.
50

�0
.0
1

0.
50

0.
27

0.
50

Y
3

0.
3

L
ef
t

0.
01

0.
95

0.
25

0.
30

�0
.1
0

0.
60

0.
29

0.
40

0.
00

0.
91

0.
42

0.
30

0.
02

0.
94

0.
34

0.
31

0.
09

0.
38

0.
15

0.
15

0.
3

M
id

0.
00

0.
93

0.
21

0.
30

�0
.0
9

0.
66

0.
26

0.
40

�0
.0
2

0.
92

0.
37

0.
31

0.
01

0.
95

0.
31

0.
30

0.
11

0.
24

0.
15

0.
16

0.
3

R
ig
ht

0.
00

0.
95

0.
25

0.
31

�0
.1
2

0.
55

0.
27

0.
42

0.
01

0.
93

0.
39

0.
29

0.
03

0.
93

0.
36

0.
30

0.
09

0.
36

0.
15

0.
15

0.
3

T
ai
l

0.
00

0.
97

0.
22

0.
30

�0
.1
1

0.
56

0.
27

0.
40

0.
01

0.
92

0.
40

0.
30

0.
02

0.
91

0.
28

0.
30

0.
12

0.
20

0.
15

0.
15

0.
5

L
ef
t

0.
00

0.
94

0.
23

0.
50

0.
02

1.
00

0.
25

0.
49

0.
02

0.
90

0.
37

0.
50

0.
01

0.
95

0.
31

0.
50

�0
.0
6

0.
02

0.
12

0.
53

0.
5

M
id

0.
00

0.
90

0.
19

0.
50

�0
.0
1

0.
92

0.
29

0.
50

�0
.0
1

0.
93

0.
39

0.
50

0.
01

0.
93

0.
28

0.
50

0.
01

0.
06

0.
12

0.
47

0.
5

R
ig
ht

0.
01

0.
93

0.
23

0.
50

0.
00

0.
98

0.
45

0.
49

�0
.0
1

0.
97

0.
46

0.
50

0.
02

0.
96

0.
38

0.
50

�0
.0
2

0.
00

0.
12

0.
50

0.
5

T
ai
l

0.
00

0.
95

0.
21

0.
50

�0
.0
2

0.
99

0.
27

0.
50

0.
00

0.
88

0.
29

0.
49

0.
03

0.
96

0.
30

0.
50

�0
.0
1

0.
46

0.
13

0.
50

N
ot
es
:T

he
ta
bl
e
de
pi
ct
s
bi
as

of
th
e
m
ea
n,

co
ve
ra
ge

ra
te
fo
r
th
e
m
ea
n,

C
I
w
id
th
,a

nd
th
e
es
ti
m
at
ed

pe
rc
en
ta
ge

of
ze
ro
s
ob

ta
in
ed

us
in
g
di
ff
er
en
ti
m
pu

ta
ti
on

m
et
ho

ds
an

d
di
ff
er
en
t
m
is
si
ng

ne
ss

m
ec
ha

ni
sm

s
fo
r
se
m
ic
on

ti
nu

ou
s
va
ri
ab

le
s
Y
1
th
ro
ug

h
Y
3.
A
ll
ca
se
s
re
pr
es
en
t
a
sa
m
pl
e
si
ze

of
n
=
50
0
an

d
50
%

M
A
R

m
is
si
ng

ne
ss
.

72 G. Vink et al.

© 2014 The Authors. Statistica Neerlandica © 2014 VVS.



In contrast, the bias of the mean for irmi is very small for a high-correlating
covariate but very large for the non-correlating covariate.
For all methods, the absolute bias decreases when the variable with missingness

become skewed, that is, for Y2 through Y5. This, however, is to be expected, because
with more-skewed variables, means and variances are closer to zero than in the case of
less-skewed variables (Figure 1). For all three methods, bias increases with the
percentage of missingness, but this effect is much more pronounced for the BGLoM
and for mi. The bias of the mean of mi for simulations with less (25%) missingness is
comparable to the bias of the mean of PMM (not shown).

4.2 Bias of the correlation with the covariate

Figure 2 displays the difference between the true correlation and the recovered corre-
lation (correlation bias). Correlation bias is smaller for PMM, irmi, and the two-part
model, than for the BGLoM, even for skewed semicontinuous variables. However,
when variables become more skewed (e.g., in the case of Y4 and Y5), correlations for
PMM and the two-part model tend to be overestimated. irmi correlations are always
overestimated. The amount of overestimation increases for variables that are more
skewed. PMM, irmi, and the two-part model are clearly sensitive to extreme skewness,
for example, in Y4 and Y5.
MI produces large correlation bias even in the case of Y1 and there does not seem to

be any relation to the missingness mechanisms. For mi, it shows that the combination
between skewed data and tailed MAR missingness systematically results in large

Fig. 2. Bias of the correlation with the covariate X1 for different imputation methods over 100 simulations.
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correlation bias. For Y5, we note that besides the much larger bandwidth, the
maximum bias of the correlation for mi is smaller than the maximum bias of any
other method.
The results and findings are similar for the uncorrelated covariate X4 (not shown).

For all three methods, it holds that correlation biases become smaller when sample
size increases, but there is no clear relation with the size of the point mass and the
amount of missingness.

4.3 Bias of the median

Estimating the median for Y1 through Y5 from imputed data can lean to large biases,
especially when the population has been randomly assigned 49% of zeros and the
imputed data returns 51% of zeros. Biases of the median are therefore mostly
influenced by the size of the point mass, with biases being much lower for data with
30% zeros. Besides, when skewness increases in the simulation data, point estimates
move closer to zero, resulting in biases being very near to zero for Y4 and Y5 for all
methods (Figure 3).
In all other cases, PMM and the two-part model are less biased than mi, irmi, and

the BGLoM. Further, the spread in the biases is much lower for PMM than for irmi,
mi, and the BGLoM but is similar between PMM and the two-part model. The
amount of missingness does not influence the extent of the bias, neither does the
missingness mechanism, nor does the sample size. The non-correlating covariate
results in slightly smaller median biases for all methods.

Fig. 3. Bias of the median for different sizes of the point mass over 100 simulations given covariate X1.
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4.4 Coverage rates and confidence interval widths

PMM and the two-part model have very consistent coverages, whereas irmi and
BGLoM coverages tend to vary to a great extent. mi shows a pattern opposite to that
of PMM and the two-part model.With mi, increasingly skewed variables show increas-
ingly higher coverages. The same holds for the BGLoM, but to amuch lesser extent. The
BGLoM and mi, occasionally, even display a 100% coverage over 100 simulations
(Figure 4). However, we can see in Figure 5 that mi and the BGLoM also have much
wider confidence intervals. This only holds for covariates that have predictive power.
When there is no relation with the covariate (e.g., as in X4), the two-part model

shows the smallest confidence interval widths with consistent coverages. BGLoM
and mi confidence interval widths are also smaller than the confidence interval widths
for PMM, although this difference disappears as variables become more skewed.
More, PMM coverages for data with a 30% point mass are much higher than
BGLoM coverages in the case of low-correlating predictors.
The irmi algorithm shows a severe problem: confidence interval widths are small,

but coverage rates are either 0 or very small. This only happens in the case of a single
non-correlating covariate. As soon as there is some predictive power, results improve,
although the coverage rates are never on par with PMM or mi. The reason for this
phenomenon is the logistic step in the algorithm either appoints the missing data as
continuous or as part of the point mass, resulting in 75% or 25% zeros (in the case
of a 50% point mass at zero with 50% missingness). The average of all imputed means
over 100 simulations may be close to the population mean, but the confidence
intervals of those respective means do not contain the population mean.

Fig. 4. Coverage rates for different imputation methods over 100 simulations using covariate X1.
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PMM and the two-part model show lower coverages for missingness mechanisms that
involve the right tail of the data, but only for Y4 and Y5, where skewness moves to the ex-
treme. irmi also displays this trend, but to a much greater extent. The BGLoM, on the
other hand, shows unacceptable coverages for left-tailedmissingness, but this trendweakens
when skewness moves to the extreme. For right-tailed missingness, the BGLoM and mi
show larger confidence interval widths, whereas the confidence interval widths for PMM
and for the two-part model are not clearly influenced by the location of the missingness.
Please note that for PMM, irmi, and the two-part model, it can be clearly seen that for
each variable, there are three clusters of points. These clusters correspond to the three
sample sizes, where the smaller sample sizes result in larger confidence interval widths.
In general, when there is at least some predictive power, PMM coverage rates and

confidence interval widths outperform those of irmi, mi, and the BGLoM. Further,
two-part and PMM coverage rates and confidence intervals are very similar, with
PMM having less variation between the different MAR mechanisms.
Lower percentages of missingness result in (slightly) higher coverage rates, as do

larger sample sizes.

4.5 Point mass

Tables 1 and 2 also show the percentage of estimated amount of zeros (point mass),
for the simulated conditions. The performance of PMM and the two-part model does
not rely on the size of the point mass. Both algorithms estimate the size of the point
mass correctly, with very small deviations, regardless what the simulation conditions
are. See Figure 6 for a graphical representation of the biases of the estimated point

Fig. 5. Confidence interval widths for different imputationmethods over 100 simulations using covariateX1.
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mass. The BGLoM, on the other hand, is not that insensitive against the size of the
point mass, as we have already seen in previous paragraphs. For the BGLoM, the
estimation of the amount of zeros heavily depends on the size of the point mass in
the original data and the missingness mechanism.
The point mass estimated by mi is acceptable in the case of a high-correlating

covariate, although PMM, irmi, and the two-part are more accurate. In the case
of a non-correlating covariate, the amount of zeros estimated by mi is comparable
to PMM and the two-part model.
As we have mentioned in Section 4.4, in the case of a single non-correlating

covariate, irmi performance could be improved. For the 50% point mass, the aver-
age amount of zeros is very close to the population point mass; however, the individ-
ual point masses are either 25% or 75%. For the 30% point mass, this biased
estimation of the zeros becomes more apparent. Table 2 shows this underestimation
of the 30% point mass by the irmi algorithm.
The estimation of the zeros by irmi also differs from the other methods with a two-

stage approach. The amount of zeros and the location of the zeros is the same for each
of themmultiply imputed datasets, meaning that there is less between imputation variance
thanmultiple imputation theory dictates. This can be easily solved by drawing β* for each
of themmultiple imputation streams from a multivariate normal distribution centered at

β̂ with covariance matrix V̂ ð β̂Þ, conform the algorithm in Section 2.2.
The amount of skewness does not influence the bias of the point mass estimate.

Please note that point masses for mi, irmi, the two-part model, and the BGLoM

Fig. 6. Bias of the estimated size of the point mass for different imputation methods over 100 simulations
using covariate X1.
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are equal for matching simulation conditions on different variables. This is due to
the sequential nature of these methods, where the imputation of zeros is treated fixed.

4.6 Distributional shapes

PMM preserves the distributional shapes of the variables, even for the most extremely
skewed semicontinuous variables, although some information is lost in the right tail
of the distributions due to sampling. mi imputes a log-transformation of the
continuous part of a semicontinuous variable, which clearly shows from the plots.
Non-negative data are imputed, and the larger part of the imputations follows the
original data distribution. However, medians are underestimated, and extreme
values are imputed on the right-tail side, because the back transformation of the
log-transformed data introduces extreme imputed values.
irmi imputations produce imputations that are similar to the original data distri-

bution, but only for Y1 and Y2. As variables become more skewed, distributions of
completed data become very similar to those of the two-part model. For the
BGLOM, two-part imputation and irmi, it holds that when skewness increases,
these model-based methods tend to represent a normal curve again (Figure 7).

4.7 Plausibility of the imputations

The original data are non-negative, but the two-part model, irmi, and the BGLoM
will also impute negative values. In contrast, PMM and mi will impute only positive
data, thus resembling the original distribution closer. However, mi imputes implausible
values in the right tail, moving outside the range of population values. The hot-deck
nature of PMM prevents imputations from moving outside the range of observed
values, thus preserving the data distribution in this respect. This is a particular
useful feature if the original data distributions and relations are to be preserved
for further analysis.

5 Multivariate simulation

In order to be able to compare the performance of the imputation methods under
multivariate missingness, we create a population from which we sample. Just like
the univariate situation, the population has size N=50, 000, but we fix the point mass
to a 50% point mass at zero. We used simple random samples of size 1000. We
consider multivariate simulations under a normal distribution, simulations for skewed
distributions, and simulations for skewed distributions with outliers.

5.1 Generating semicontinuous population data

We aim to create a population with two semicontinuous variables Y1 and Y2 and a
covariate X where all three variables are correlated. To this end, we start by creating
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two normally distributed variables Q1∼N(5,1) and Q2∼N(5,1) to which we assign a
point mass at zero by drawing from a binomial distribution with a 50% chance for
any value in Q1 or Q2 to take on the point mass. Please note that the results are again
two semicontinuous variables wherein the continuous part is normally distributed.
For the normal multivariate simulation, we set

T1 ¼ Q1

T2 ¼ Q2;

and for the multivariate simulation with skewed variables and with outliers, we use
the following transformations:

T1 ¼ Q4
1=max Q3

1

� 	
T2 ¼ Q4

2=max Q3
2

� 	
;

and we create a covariate W∼N(5,1) independent of the other variables. These three
variables can be combined in a data matrix D= [T1T2W]. By construction, the three
variables T1, T2, and W are uncorrelated. To introduce correlation, we specify the
following target correlation matrix:

RYX ¼

Y1 Y2 X

1 :5 :5

:5 1 :5

:5 :5 1

2
6664

3
7775 :

Fig. 7. Right-tailed MARmissingness: boxplots of the original data and imputed data for five imputation
methods for 50% missing data. Imputations are based on covariate X1.
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Now we find a matrix U such that UTU=RYX, and we transform T1, T2, and W to
the final correlated variables by transforming the data matrix D to the final data
matrix Dc by Dc= [Y1Y2W] =DU. Any ‘transformed’ zeros in Y2 are set to zero.
The following cross-table shows the partitioning of the data in four parts. Within
brackets are cross-tabulated proportions of the point mass and continuous parts of
both variables as observed in the population.

We create multivariate missingness following the procedure as described in Section
3.3 with difference that missingness in each Y is not imposed for all Y simultaneously
but depends on the other variables in the data.
For the multivariate simulation with outliers, the preceding procedure is used to

create an additional 500 values with Q1∼N(7,1) and Q2∼N(7,1), leading to an
outlier percentage of approximately 1% in each drawn sample.

6 Multivariate results

6.1 Multivariate normal

The results of the multivariate normal simulations can be found in Table 3. All inves-
tigated methods retrieve the correct proportions for cells A, B, C, and D, with the
exception of complete case analysis (CCA). mi proportions seem somewhat more
biased than proportions for other methods.
The same results can be found for the correlation between the two semicontinuous

variables. All imputation approaches retrieve this correlation with low bias, but mi
seems to struggle with missing completely at random (MCAR) already. This is due
to mi log-transforming all incomplete semicontinuous data before imputation, even
when the continuous parts follow a normal distribution.
PMM and the two-step method performed well as biases of the means of Y1 and Y2

are low, their coverage rates are acceptable and plausible, and the correlation between
Y1 and Y2 is accurately retrieved. The correlation bias for the two-step method is
rather large for missingness mechanisms that involve the middle of the data.
irmi performance is good, for all estimates except the coverage of the mean. This

indicates that irmi does not include enough between variation in the imputations
when used as a mi approach.
The BGLoM performs well for all measures, except for the correlation between Y1

and Y2 for tailed missingness. Also, biases for Y1 and Y2 are quite large in situations
where the missingness mechanism involves the left tail. Maybe coverage of the mean
of Y1 and Y2 is a bit too well, as coverage rates tend to be 1. Comparing these results
with those for the univariate case shows that the BGLoM clearly benefits from the
multivariate nature of the data.

Y2 = 0 Y2≠ 0

Y1 = 0 A (0.250) C (0.252)
Y1≠ 0 B (0.249) D (0.249)
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6.2 Multivariate skewed

It is known that some of the tested methods rely on symmetry. As a remedy,
appropriate transformations could be used to transform skewed data accordingly.
However, we find the skewed data case itself still of interest. As seen in the univariate
simulations, back-transforming data may lead to imputing extreme values. Also, a
log-transformation may not always be the most appropriate transformation for the
whole data, making transforming the data a potentially tedious job, thereby delaying
the imputation stage. Performance assessment of a method for imputing skewed
semicontinuous data that does not necessarily require a transformation, such as
PMM, is therefore still useful. The results of the multivariate simulation with skewed
target variables can be found in Table 4.
All investigated methods retrieve the correct proportions for cells A, B, C, and D,

with the exception of irmi. Applying a log-transformation to the incomplete data
before imputing with irmi led to a minor decrease in performance. Because of this,
we decided to post the results for irmi without using a transformation.
PMM performed well, as biases of the means of Y1 and Y2 are low, their coverage

rates are acceptable and plausible, and the correlation between Y1 and Y2 is
accurately retrieved. The two-part model and mi also perform quite well, but
coverages are much lower for missingness mechanisms that involve the right tail.
Also, mi yields large correlation biases when the missingness involves the right tail.
irmi performance is weak, for all estimates except the bias of the mean. This

underperformance of irmi is mainly due to the logistic step assigning all missing
values to either the point mass or the continuous distribution (cf. Sections 4.4 and 4.5).
The BGLoM performs well for all measures, except for the correlation between Y1

and Y2. Also, biases for Y1 and Y2 are quite large in situations where the missingness
mechanism involves the right tail. Maybe coverage of the mean of Y1 and Y2 is a bit
too well, as coverage rates tend to be 1. Again, it is clear that the BGLoM benefits
from the multivariate nature of the data.
Complete case analysis, as expected, shows good results for MCAR but yields bias

in the cross-tabulated proportions, low coverages, and large mean biases, especially
when the left or right tails are involved.

6.3 Multivariate skewed with outliers

For the multivariate simulation with outliers, we assessed method performance by
comparing the imputed data with the population data. The imputed data depend on
the outliers, whereas the population data are considered before the outliers are added.
Log-transforming the data before imputation resulted in a minor improvement for

PMM, and the two-part model, but yielded worse results for irmi. For irmi, using
robust regression without log-transformation yielded the best results. Given these
increases in performance, we present log-transformed results for PMM and the two-
part model and ‘robust’ results for irmi. Please note that mi always log-transforms
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semicontinuous data. The results of the multivariate simulation with skewed target
variables with outliers can be found in Table 5.
It becomes apparent that irmi facilitates robust estimation as mean values are

very accurately estimated for all missingness mechanisms, except tailed missingness.
The two-part model, mi, and PMM all show larger mean biases, leading to severely
lowered coverage rates. We must note that simulation conditions for irmi in the case
of left-tailed, right-tailed, and mid-MAR missingness are different from the simula-
tion conditions of the other methods due to algorithmic difficulties with packages that
irmi depends on. As a solution, we present irmi results for these missingness
mechanisms with only 25% missingness. Mean biases of the other methods are very
similar to those of irmi when 25% missingness is imposed.
Curiously, although irmi does often yield very accurate imputed means, the

coverage rates are always below acceptable levels, indicating that irmi does not
add enough between variation when considered as a multiple imputation approach.
All investigated methods retrieve the correct proportions for cells A, B, C, and D,

except for irmi. Especially in the case of left and tailed missingness the amount of
zeros is wrongly estimated. In the case where the missingness involves the right tail,
biases are generally low and coverage rates are acceptable for all methods, except
for irmi. The performance of irmi is rather weak when the right tail is involved.
It is clear that the BGLoM benefits from the multivariate nature of the data. The

BGLoM yields acceptable results, although mean biases are sometimes a bit large.
Also, the BGLoM yields biased estimates for the correlation when the missingness in-
volves the right tail. Again, BGLoM coverage rates are too large, indicating too much
variation between the imputed datasets.
The BGLoM delivers the most accurate estimate for the correlation between Y1

and Y2 when the right tail is not involved. When the right tail is involved, PMM de-
livers on average the more accurate estimates for the correlation coefficient, especially
for tailed MAR missingness.
All in all, there is no one single imputation method for semicontinuous data that is

robust against outliers and yields acceptable inference on all investigated estimates
across all simulation conditions.

7 Application to real data

Two datasets are used for evaluating PMM imputation on real-world data, one from
social statistics [The Hague Twitter Scene (HTS) data] and one from official statistics
(Dutch Wholesalers Statistics 2008). All investigated variables are either complete or
have been edited already. Missingness is imposed by a MAR missingness mechanism.

7.1 HTS data

Twitter data gathered from the HTS is chosen as a real-world dataset from social
sciences (Sargasso.nl, 2012). Based on the HTS data, Sargasso.nl (2012) created a
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network indicating the influence of people and their opinions in Dutch politics. The
318 people investigated include politicians, journalists, spin doctors, and managers.
One variable that is particularly interesting is the Incrowd Tweet Success Rate

(ITSR), indicating for each respondent the percentage of tweets being retweeted or
replied within the HTS. This variable is related to the Tweet Success Rate (TSR), being
the overall percentage of tweets being replied or retweeted. Both variables are
semicontinuous, as some people are never retweeted or replied, but we choose ITSR
for demonstration because it contains a larger point mass at zero (22%). Approximately
50% left-tailed MAR missingness was imposed in ITSR with TSR as a covariate.
Table 6 shows the results for ITSR after imputation for all investigated methods.

PMM estimates the total amount of zeros in the data very accurately. Some values
that were originally zeros are set to continuous, but overall performance is very good.
The same holds for the two-part model, but the two-part model distributes more
values into cell C and overestimates the correlation between the continuous parts of
cell D. mi redistributes values across the four cells, A, B, C, and D, and underesti-
mates the total amount of zeros. The correlation ρ after imputation is underestimated.
The BGLoM and irmi both underestimate the total amount of zeros, although no

values that were originally zero are set to continuous. Instead, many values that were
originally zero and had a matching continuous value in the covariate TSR are set to
continuous after imputation. As a result, the BGLoM underestimates the correlation
coefficients ρD and ρ, and irmi overestimates these coefficients. The BGLoM severely
overestimates the mean of ITSR after imputation.

7.2 Dutch Wholesalers Statistics 2008

The Dutch Wholesalers data from 2008 is chosen as a typical real-world dataset from
official statistics. The data (N=831 after editing) are collected by Statistics Netherlands
(CBS) and consists of variables such as the number of employees, turnover, and costs for
Dutch wholesalers. We focus on the amount of temporary workers (TEMPS), as this
variable has a large point mass at zero (36.5%) and consists otherwise of data that can
be considered as continuous.
Approximately 50% left-tailed MAR missingness was imposed (cf. Section 3.3) on

TEMPS with the total amount of employees (EMPL) as a covariate. Left-tailed

Table 6. Comparison between true and imputed ITSR for all imputation methods

Zero A B C D ρD ρ Mean ciw

ITSR 69.0 40.00 29.00 0.00 249.00 0.31 0.46 0.07 —
PMM 69.4 36.00 29.40 4.00 248.60 0.31 0.46 0.07 0.02
2-Part 70.4 32.60 30.40 7.40 247.60 0.37 0.47 0.06 0.04
MI 65.33 27.33 25.33 12.67 252.67 0.29 0.36 0.07 0.02
IRMI 55.0 40.00 15.00 0.00 263.00 0.40 0.50 0.07 0.02
BGLoM 92.2 36.60 52.20 3.40 225.80 �0.02 0.01 0.10 0.67

Notes: Depicted are the total amount of zeros, the amount of values in cells A, B, C, andD, the correlation ρD of
values in cell D, the total correlation ρ, mean ITSR after imputation and the width of the confidence interval.
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missingness is more realistic for this type of data and would be encountered in real
life, as the larger companies tend to be always observed in official statistics.
Table 7 shows the results for the original data and the investigated methods. PMM

performs very well overall and shows low biases in estimating the point mass, the
correlation, and the mean of TEMPS. The total amount of temporary workers
(sum) is closely approximated. The two-part model best estimates the size of the point
mass, but the correlation is underestimated, and the mean of TEMPS and the sum of
TEMPS are overestimated.
mi also performs very well, especially in estimating the sum of TEMPS, but has a

bit more bias in estimating the point mass. It shows that the continuous nature of the
covariate is beneficial to mi. irmi underestimates the point mass by a large amount
and shows an overestimation of the mean and sum of TEMPS, but bias in the
correlation is rather low. The BGLoM shows a large overestimation of the point mass
and therefore underestimates the mean and sum of TEMPS, but correlation bias is
lowest of all investigated methods.

8 Conclusions

How does PMM compare to specialized methods such as mi, irmi, the BGLoM, and
the two-part model for imputing semicontinuous data? All in all, PMM, mi, and the
two-part model generally outperform irmi and the BGLoM.
Between PMM, mi, and the two-part model, we conclude that PMM performance

is best overall. The performance of PMM is at least as good as the performance of mi
and the two-part model, with PMM often outperforming the other methods. PMM
preserves data distributions and imputes only non-negative values when the data
consist of non-negative values. mi can also impute non-negative values, but the log-
transformation procedure leads to imputing non-negative values that are far outside
the range of observed values, leaving PMM the only investigated method that
preserves the original data distribution.
In the multivariate simulations, it shows that none of the imputation procedures are

specifically suitable to impute semicontinuous data in the presence of outliers.
Depending on the estimate of interest, it might be beneficial to impute large amounts
of incomplete skewed data with outliers by different approaches as there is no single

Table 7. Comparison between true and imputed TEMPS for all imputation methods

Zero ρ Mean ciw Sum

TEMPS 304.00 0.48 5.02 — 4172.00
PMM 312.80 0.50 4.94 2.31 4103.80
2-Part 300.60 0.40 5.88 4.18 4881.98
MI 294.67 0.51 5.02 2.11 4170.49
IRMI 120.00 0.45 5.63 2.70 4681.64
BGLoM 514.00 0.49 4.14 2.26 3440.17

Notes: Depicted are the total amount of zeros, the correlation between TEMPS and EMPL ρ, mean
TEMPS after imputation, and the width of the confidence interval.
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imputation approach that yields acceptable inference over all simulation conditions.
Improving on more efficient and robust estimation of predicted means could improve
the performance of PMM for semicontinuous data with outliers, but exploring such
applications is subject to future work.
An important part of semicontinuous data is the size of the point mass and its

relation to auxiliary variables. We can see from both the univariate and multivariate
simulations that PMM accurately estimates the size of the point mass, independent
from the missingness mechanism, and best preserves the correlation in the data when
outliers are not considered. The total amount of zeros, and the range and location of
the continuous values are also accurately estimated by PMM as estimations for the
median and mean yield very low bias. Coverage rates for PMM are acceptable and sta-
ble, indicating that standard errors are not too firm or too liberal and that uncertainty
and variability within and between imputations are well executed.
The strength of PMM as an imputation method for semicontinuous data lies in its

hot-deck properties. Imputed values are drawn from the observed data instead of an
assumed model for the distribution. The benefit to this approach is that patterns and
relations that are present in the data will be preserved in the imputed data under
MCAR and MAR mechanisms, as the missingness mechanism in these models is
either random, or based on the observed data. For missing outlying values in very
skewed data, there may be no close donor values, and model-based predictions can
sometimes perform better. Finally, PMM as a hot-deck method requires a sufficiently
large donor pool in order to yield acceptable inference.
Our results suggest that PMM can be used by data analysts and applied researchers as

an imputation method for semicontinuous data. However, imputing semicontinuous
data, in general, must be performed with care. Skewness, the missingness mechanism,
outliers, and the size of the point mass are important factors and may influence the
imputations. However, the performance of PMM is very stable, and the method was
found to yield accurate inferences in the most extreme conditions, even in the case of
no predictive power in the dataset.
Using PMM as an imputation method, instead of the other investigated methods,

may be convenient in practice. The two-part model, mi, irmi, and the BGLoM
are model-based approaches, with accompanying assumptions and limitations.
Although some of these limitations can be dealt with by using some kind of transfor-
mation of the data, PMM does not rely on these assumptions and does not show the
same limitations as these methods. Given that PMM is already available in statistical
software gives applied researchers the possibility to use PMM as an all-round
imputation method that can be used for other types of data.
There are some limitations to this research. First, we limited our research to contin-

uous covariates. In real datasets, nominal or ordinal data may occur. In practice,
these types of variables may be handled by using dummy variables or data transfor-
mations. We see no reason how that could impact the performance. Second, BGLoM
coverage rates often exceed the 95% level. This can be attributed to a too large
amount of between variation between the multiply imputed datasets. As a result,
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estimations may be correct on an inference level, but increasing between imputation
variance yields too wide confidence intervals, leaving the method to be too conserva-
tive. Finally, we display results for simulations with 50% missingness in each variable,
thereby severely limiting performance in univariate and multivariate data scenarios.
In practice, less missingness is often encountered, which will benefit performance of
all methods.
To conclude, PMM is at least as good for imputing semicontinuous data than

dedicated methods for such data. PMM is very flexible as a method, because of its
hot-deck characteristics, and is free of distributional assumptions. Moreover, PMM
tends to preserve the distributions in the data, so the imputations remain close to
the data. These properties generally appeal to applied researchers.
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