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Abstract
Physiologic data from anesthesia monitors are automatically captured. Yet erroneous data are stored in the process as well. 
While this is not interfering with clinical care, research can be affected. Researchers should find ways to remove artifacts. 
The aim of the present study was to compare different artifact annotation strategies, and to assess if a machine learning 
algorithm is able to accept or reject individual data points. Non-cardiac procedures requiring invasive blood pressure moni-
toring were eligible. Two trained research assistants observed procedures live for artifacts. The same procedures were also 
retrospectively annotated for artifacts by a different person. We compared the different ways of artifact identifications and 
modelled artifacts with three different learning algorithms (lasso restrictive logistic regression, neural network and support 
vector machine). In 88 surgical procedures including 5711 blood pressure data points, the live observed incidence of artifacts 
was 2.1% and the retrospective incidence was 2.2%. Comparing retrospective with live annotation revealed a sensitivity of 
0.32 and specificity of 0.98. The performance of the learning algorithms which we applied ranged from poor (kappa 0.053) 
to moderate (kappa 0.651). Manual identification of artifacts yielded different incidences in different situations, which were 
not comparable. Artifact detection in physiologic data collected during anesthesia could be automated, but the performance 
of the learning algorithms in the present study remained moderate. Future research should focus on optimization and find-
ing ways to apply them with minimal manual work. The present study underlines the importance of an explicit definition 
for artifacts in database research.
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1 Introduction

Physiological data captured by anesthesia monitors are used 
for medical record keeping during anesthesia. Such data 
are stored in Anesthesia Information Management System 
(AIMS) databases along with other anesthesia record keep-
ing data. These rich databases are widely used for clinical 

research, since the data are obtained without much extra 
effort or altering the clinical workflow. However, automati-
cally collected monitor data often include erroneous data 
that are not reviewed before they are stored, which may bias 
research results [1, 2]. In daily practice the anesthesiolo-
gist ignores artifacts based on other information available 
and therefore clinical anesthesia care is not affected. For 
example, artifacts in the ECG signal caused by detached 
electrodes (‘asystole’) can be ignored in the operating room 
based on other monitoring (normal invasive blood pressure 
signal). When these same data are used for research pur-
poses, the context of the procedure is lost, and it is harder 
to distinguish which measurements are true and which are 
artifacts [3, 4].

Usually researchers come up with a definition of artifacts, 
and apply this definition to the data to correct errors. For 
example, values above and below a certain threshold are 
defined as artifacts and consequently removed from the data. 
Several other solutions for artifact removal are available [5] 
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and effectiveness and accuracy of these methods will depend 
on the situation in which the data were collected. There is 
no consensus on which method for artifact removal should 
be used in AIMS database research. Thus far the removal of 
artefactual data live by hand (with presence in the operating 
room) seems to be the gold standard, to which other methods 
are compared [6–9]. Manual cleaning of artefactual data is 
not only a cumbersome and time consuming process, but 
could also depend on the situation in which the data were 
collected, similarly to automatic filtering methods. Factors 
that can affect artifact annotation are for example: the time 
when the data were annotated (during the anesthesia proce-
dure or afterwards) the location (presence in the operating 
room or remote location) and who annotated the data ( i.e. an 
anesthesiologist, or a researcher). The pre-existing definition 
of artifacts in the rater’s mind or defined in a study proto-
col will influence which values will be marked as artifacts. 
Therefore manual annotations and models based on these 
manual annotations are difficult to generalize [7, 10].

The aim of the present study was to compare different 
artifact annotation strategies, and subsequently to assess if 
a learning algorithm would be able to simulate the decision 
to accept or reject individual vital sign data points. We used 
invasive blood pressure measurements as an example and 
hypothesized that regardless of different annotation methods, 
an algorithm could be trained to perform with comparable 
accuracy. Such algorithm learning strategy could standardize 
automated artifact removal to clean data for clinical research.

2  Methods

2.1  Live observation

Two research assistants (last year medical students) were 
trained by an anesthesiologist, to observe and annotate 
anesthesia procedures, during a time period of 11 weeks 
(between July 29th and October 11th) in the University Med-
ical Center Utrecht. The local ethics committees approved 
the protocol and waived the need for informed consent 
(University Medical Center Utrecht Medical Research Eth-
ics Committee, protocol no. 19–629). At the start of each 
workday, the assistant identified non-cardiac procedures in 
adults with planned invasive blood pressure monitoring. 
Each measurement session covered a part of the anesthesia 
procedure of at least one hour, to ensure that a mix of proce-
dures was sampled. Procedures were preferably visited after 
induction or before end of surgery. The visiting order was 
not randomly determined, rather procedures were visited in 
sequence (i.e. when an observation was finished, the research 
assistant would identify the next eligible procedure to visit). 
The research assistant registered observations on a laptop 
that was not connected to the operating room equipment. We 

used Behavioral Observation Research Interactive Software 
(BORIS, https ://www.boris .unito .it, Torino, Italy) software 
to record live observations during anesthesia. This software 
package allows for swift registration of observations, using a 
keystroke per type of observation, ensuring fine granularity 
in the data [11].

Invasive blood pressure was measured with an Intelli-
Vue monitoring system (type MP70, X2 multimeasurement 
module; Philips, Germany). To mark the beginning of a 
registration, the arterial catheter was flushed, which gen-
erated a flush artefact in the waveform recordings, which 
was used later. Observers were instructed to document the 
start and end of any disturbance of the waveform signal, dis-
played on the patient monitor. At the same time, the reason 
for this artifact period was documented. When the observer 
was uncertain about the artifact events, he was permitted 
to discuss the artifact with the clinician responsible for the 
anesthetic procedure. The different artifact reasons for blood 
pressure were flush, blood sampling, sensor issues or move-
ment of the patient, simultaneous non-invasive blood pres-
sure measurement and height of the pressure sensor. The 
observer described this reason as a free text comment. When 
the observer was not able to categorize the reason of an 
artifact, this was later discussed with the research team and 
categorized.

The BORIS live registration software was not able not 
register the true observation time, based on the true time of 
the AIMS database (Anstat, version 2.1, 2019, Carepoint, 
Ede, The Netherlands). Therefore we looked up the flush 
event in the stored waveform data. With the registered flush 
time at the beginning of the observation and the actual flush 
time we synchronized the live observations with the data 
points in the AIMS database. Waveform data were analyzed 
using SignalBase, version 10.0.0 (legal copyright: UMC 
Utrecht MTKF, Utrecht, the Netherlands). SignalBase was 
developed to review and analyze raw waveform data as 
stored in the AIMS database.

2.2  Data registration and retrospective annotation

In the institutional AIMS one data point for each meas-
urement minute of invasive blood pressure is stored. This 
value is calculated by taking the median of the previous 
measurement minute (which encompasses 12 data points 
outputted by the patient monitor at 1/5 Hz). The resulting 
data points (1/60 Hz) were annotated retrospectively by one 
of the researchers (E.W.). This annotation was done using 
an interactive R shiny application designed for this study 
(https ://githu b.com/wietz e314/annot ate-vital -signs ), which 
displayed data points from the AIMS database. The inva-
sive blood pressure measurements were annotated, with the 
complete health record available, as an additional reference, 
but blinded by the artifact identification done by the live 

https://www.boris.unito.it
https://github.com/wietze314/annotate-vital-signs
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observant. Therefore the observer was also aware of events 
and medication administrations during anesthesia. Besides 
artifact annotations, the application also collected meta-data 
such as the start and end time of the annotation process per 
observation.

2.3  Data preparation and definition of artifacts

In order to compare the live observations to the retrospec-
tive annotations, we linked both datasets to the vital signs 
data in the AIMS database. During live observation the time 
period, in which the monitor displayed artifactual data, was 
registered. The data points stored in the AIMS database 
were based on a period of one minute of measurements. To 
combine these data, we calculated how much overlap each 
of the measurement minutes had with artifact periods. If 
there was any overlap (i.e. the AIMS data point was based 
on waveform data with artifacts), the data point was defined 
as an artifact (definition 1). Additionally, to generate a more 
specific artifact definition, we defined a data point as an 
artifact when there was more than 30 s of artifact during a 
measurement minute (definition 2). Furthermore, we marked 
individual data points as artifacts retrospectively, based on 
the available AIMS data (definition 3). The concept of data 
preparation is illustrated in Fig. 1. Apart from the data points 
stored each minute (1/60 Hz), we also collected 1/5 Hz data 

from a subsample of the cases, of which these higher resolu-
tion data were automatically stored in the AIMS database. 
We could not collect these data from all cases, because it 
required a change in settings of the AIMS software, which 
was set in only a part of the operating rooms for the purpose 
of this study. A 1/5 Hz data point was defined as an arti-
fact, when this data point was within a live observed artifact 
period (definition 4) (Fig. 2).

In addition to the data collection of artifact periods, the 
observer also noted the cause of these artifactual periods. 
In the rare event of a data point which was influenced by 
multiple artifacts, the cause of artifact for that data point 
was determined by a majority vote, i.e. the cause that repre-
sented the most seconds of artifact was chosen. For example 
if within a measurement minute there was an artifact of 10 s 
because of blood sampling and subsequently an artifact of 
30 s caused by manipulation of the blood pressure sensor, 
the data point was classified under the latter cause (Sensor 
issues or movement).

2.4  Blood pressure processing

Our aim was to predict artifacts in AIMS data, using data 
normally available for retrospective database research. 
Therefore, we chose to only use vital signs data points (blood 
pressure and heart rate) to extract features for algorithm 

Arterial waveform

Live observation

1/5 Hz data

AIMS data

1: any artifact

2: >30 seconds

3: retrospective

Artifact
Definition

Fig. 1  A simplified display of monitor and anesthesia information 
management system (AIMS) database data. Live artifact observa-
tions (red line) were based on the arterial waveform displayed on 
the patient monitor. Each minute (vertical lines) the AIMS software 
stored a data point (blue), which was based on the previous meas-
urement minute (1/5  Hz data) (orange data points). The live obser-
vations were translated to artifacts by two definitions. Finally AIMS 
data points were retrospectively annotated. Definition 1: When there 

was any artifact during the measurement minute, the data point was 
identified as an artifact. Definition 2: When there was more than 30 s 
of artifact, during the measurement minute, the data point was iden-
tified as an artifact. Definition 3: Retrospectively identified artifacts, 
according to stored AIMS data points. Definition 4: The 1/5 Hz data 
points (orange) were considered artifacts, when they fell within a arti-
fact period (red lines)
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training. The feature types that we extracted and calculated 
were: systolic blood pressure, diastolic blood pressure, mean 
blood pressure, heart rate, pulse pressure (systolic–diastolic 
blood pressure), ratios between heartrate and blood pressure 
(systolic blood pressure divided by heartrate and diastolic 
blood pressure divided by heartrate), ratio between systolic 
and mean arterial blood pressure, and ratio between mean 
and diastolic arterial blood pressure. For each of the afore-
mentioned features, the differences between the current data 
point and the five previous and five next data points were 
calculated. Thus in total eleven features were generated per 
feature type. Additionally, the median and the mean was 
calculated from the current data point and the five preceding 
and five following data points (11 data points), for heartrate, 
diastolic, systolic and mean blood pressure. Also the differ-
ence and the relative difference (difference divided by the 
median or mean) between the current data point and the 
median and mean was calculated. This process resulted in 
111 features to present to a learning algorithm.

The same procedure was used for 1/5 Hz vital signs col-
lected from the AIMS database, in a subset of the cohort. 
Only now the 15 preceding and 15 following data points for 
each data points were used, with an interval of 20 s between 
data points (i.e. skipping 3 measurements each time). This 
in turn, generated 291 features in total.

2.5  Statistical analysis

Incidences of artifacts in different artifact annotation defi-
nitions were calculated, as well as differences between 
both observers. We then compared live and retrospective 

observations by creating contingency tables and calculat-
ing the sensitivity, specificity and positive predictive value. 
In this, the live artifact annotations (definition 1 and 2) 
were used as the reference. Finally we calculated the time 
which was used to annotate the data for the different artifact 
definition.

2.6  Learning algorithms

For training learning algorithms, we considered each AIMS 
data point as an independent observation. The features were 
calculated using the surrounding data of each data point, 
thus providing the algorithms also with information of 
changes in time. All data points were first randomly assigned 
to the training and test set, with probability of 0.8 and 0.2 
respectively. We generated a different training and test set for 
each learning algorithm method and each artifact definition, 
using different random seeds.

We used three different (machine) learning algorithms 
to model artifacts in invasive blood pressure data, i.e. lasso 
penalized logistic regression, a single layer neural network 
and a support vector machine [12]. First, we optimized the 
chosen learning algorithm. The training set was used to 
train the algorithm, and to tune the hyper parameters, with 
a fourfold cross-validation. The optimal performing set of 
hyper parameters was chosen based on the Kappa statis-
tic. We chose Kappa as a performance measure over accu-
racy, because the incidence of the outcome (artifact) was 
rare. Kappa corrects for agreement by chance, and is more 
informative for highly skewed data [13]. We trained and 
optimized all four artifact definitions separately, thus each 

Live observed cohort:
88 procedures

5 711 blood pressure data points

Definition 4

1/5 Hz data points
40 procedures

29 470 blood pressure data points

Definition 1 Definition 2 Definition 3

Retrospective 
annotation

Live annotation Live annotation

Extra retrospective data:
330 procedures

19 681 blood pressure data points

Extra retrospective data:
418 procedures

25 392 blood pressure data points

Definition 3 
extra

Retrospective 
annotation

Fig. 2  Flow diagram inclusion of observed procedures and which artifact definitions were applied. 88 procedures were live observed. 330 extra 
procedures were retrospectively collected for a post-hoc analysis
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optimal model had dedicated hyper parameters. All algo-
rithms were trained using the caret package in R [14]. We 
expressed performance of the different algorithms in sen-
sitivity and specificity and positive predictive value, based 
on the reference artifact data, which we manually collected. 
Finally, we evaluated performance of the learning algorithm 
on the test set, which was kept separated from the algorithm 
learning procedure and cross-validation.

The glmnet method was used to train a lasso restric-
tive logistic regression [15]. The hyper parameter lambda 
was optimized, which defines how much the estimates are 
penalized, and therefor determines the generalizability of the 
model. Alpha was kept constant at one, which means that 
lasso regression is performed. A neural network was trained 
using the nnet method [16]. The neural network consisted 
of one hidden layer, which size we optimized with cross-
validation, testing 2 to 20 units. In addition the hyper param-
eter weight decay was optimized setting its value from  10–7 
to 10. The weight decay parameter determines how much 
estimates are penalized, and therefor determine how gener-
alizable a model will be. Finally, we trained a support vec-
tor machine with a radial basis function or Gaussian kernel 
[17], using the svmRadial (e1071 R package) method. The 
hyper parameter C and sigma were optimized with cross-
validation. The C parameter defines how much estimates 
are penalized, and therefore determines the generalizability 
of the model, where a low C means more generalizable. C 
was varied from 5*10–4 to  103. The sigma parameter (or 
gamma parameter) determines the reach of each data point, 
which influences which observations determine the deci-
sion boundary of the support vector machine. Low sigma 

will result in a more linear decision boundary and a lower 
variance model than when a higher sigma is used. We varied 
sigma from 5 × 10–4 to 0.2.

As a post-hoc analysis, we collected extra procedures 
which we annotated retrospectively, to see if the perfor-
mance of learning algorithms might improve. These cases 
were randomly selected from January 1st to June 1st 2019. 
We only considered non-cardiac and non-thoracic surgery 
in adults. When there were issues with documentation (i.e. 
the health record was incomplete) the procedure was also 
excluded. In each selected procedure, a period of 60 min 
was randomly chosen for annotation. The middle of the 
procedure was preferred (higher probability of sampling), 
which was similar to the sampling strategy we used in the 
prospective cohort.

De-identified data collection and statistical analysis was 
performed with R (R Foundation for Statistical Computing, 
Vienna, Austria. https ://www.R-proje ct.org, R version 3.5.1 
(2018–07-02)).

3  Results

3.1  Cohort

In total we included 88 procedures, which summed up to 
a total of 5711 blood pressure data points. Additionally, 
29,476 blood pressure data points from 40 procedures cap-
tured at a higher frequency (1/5 Hz) were included (Fig. 2). 
Baseline characteristics for the observations are listed in 
Table 1.

Table 1  Baseline characteristics 
of observed procedures

Reported values are number of procedures (percentage) or median and interquartile range (IQR)
ASA American Society of Anesthesiologists, ENT ear nose and throat

Parameter N (%) or Median (IQR)

All Observer 1 Observer 2

Number of procedures 88 37 ( 100%) 52 ( 100%)
Age (years) 66 ( 56–74) 69 ( 57–76) 66 ( 55.5–74)
Durations of surgery (minutes) 344 ( 241–463) 327 ( 239–471) 356 ( 249–461)
Male 39 (44%) 19 ( 51%) 20 ( 38%)
Weight (kg) 76 ( 68.6–86.7) 76 ( 69.3–86.7) 75 ( 67.4–85.5)
Surgical specialty
 ENT and Maxillofacial 15 (17%) 8 (22%) 7 (13%)
 General 30 (34%) 11 (31%) 19 (37%)
 Neurosurgery 23 (26%) 10 (28%) 13 (25%)
 Gynaecology and Urology 17 (19%) 5 (14%) 12 (23%)
 Other 3 (3%) 2 (6%) 1 (2%)

ASA classification
 1 5 (6%) 1 (3%) 4 (8%)
 2 47 (53%) 17 (47%) 30 (58%)
 3 or 4 36 (41%) 18 (50%) 18 (35%)

https://www.R-project.org
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3.2  Artifacts

In 5711 blood pressure data points, 349 (6.1%) were based 
on data with an artifact, annotated by the observer (defini-
tion 1). According to definition 2 (at least 30 s of artifact), 
only 118 (2.1%) data points were identified as artifacts. 
Artifact incidence was 2.4% and 1.8% for observer 1 and 
observer 2, respectively. Retrospective artifact annotation 

(definition 3) yielded 124 (2.2%) artifacts (Table  2). 
Within the 40 cases that contributed 1/5 Hz data, we iden-
tified 761 (2.6%) of 29,476 data points as artifacts. For 
the post-hoc analysis we collected an additional 330 ret-
rospective observations, with 19,681 blood pressure data 
points, of which 226 (1.1%) were identified as artifacts. 
The median time spent for retrospective annotation of 418 
observations was 25 s (IQR 13–47 s)).

Taking live annotation (definition 1) as the reference, 
retrospective annotation had a sensitivity of 0.14 and a 
specificity of 0.99, with a positive predictive value of 0.40. 
Comparing the more specific artifact definition 2 (at least 
30 s of artifact) yielded a sensitivity of 0.32 and specificity 
0.98, with a positive predictive value of 0.31. Table 3 lists 
both contingency tables and test parameters.

The most frequently reported cause of an artifact was 
sensor issues and/or movement of the patient (Table 4).

The data from the 418 procedures including the 88 live 
observed procedures, were published as part of this publi-
cation on dataverse.nl (https ://doi.org/10.34894 /3UNUT S).

3.3  Learning algorithms

For each of the four artifact definitions, three different 
machine learning algorithms were fitted. Performance 
ranged from poor (definition 1, lasso regularized logistic 
regression, kappa 0.053) to moderate (definition 3: retro-
spective annotation, neural network, kappa 0.588). Few nor-
mal data points were marked as artifacts (false positives), 
therefore the learning algorithms overall had a high speci-
ficity. When the amount of data presented to the learning 
algorithm, increased (definition 3 with additional data) the 
performance also increased. For example, for support vector 
machine, kappa increased from 0.524 to 0.651 (Table 5).

Table 2  Artifact incidence according to four artifact definitions

N (%)

Cohort blood pressure data points 5711
Definition 1: Any artifact 349 (6.1)
Definition 2: > 30 s artifact 118 (2.1)
Definition 3: retrospective annotation 124 (2.2)
1/5 Hz blood pressure data points 29,470
Definition 4: within artifact 761 (2.6)
Post-hoc additional data points 19,681
Definition 3: retrospective annotation 226 (1.1)

Table 3  Comparison of artifact annotations

Contingency tables for live observed artifacts (Definition 1 and 2), 
compared to retrospective annotation (Definition 3)

Definition 3: Retrospec-
tive

Definition 1: any 
artifact

Definition 2: > 30 s 
of artifact

Artifact No artifact Artifact No artifact

Artifact 49 75 38 86
No artifact 298 5289 80 5507
Sensitivity 0.14 0.32
Specificity 0.99 0.98
Positive predictive value 0.40 0.31

Table 4  Artifact causes

NIBP non-invasive blood pressure
Artifact causes and retrospective identification
Results are presented as N (%)
Each second column’s percentage is calculated by dividing the retrospectively detected (true positives) by 
the total number of artifacts in that category

Cause of artifact Definition

Definition 1:
any artifact

Definition 2:
 > 30 s of artifact

Artifacts Retrospective Artifacts Retrospective

Blood sampling 40(12%) 8(20%) 23(19%) 5(22%)
Sensor issues or movement 136(39%) 3(2%) 23(19%) 3(13%)
Flush 9(3%) 1(11%) 1(1%) 1(100%)
Height of pressure sensor 56(16%) 23(41%) 37(31%) 20(54%)
Simultaneous NIBP 68(19%) 4(6%) 18(15%) 3(17%)
Other/Not specified 38(11%) 10(26%) 16(13%) 6(38%)

https://doi.org/10.34894/3UNUTS
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4  Discussion

4.1  Main findings

We compared different artifact annotation strategies of 
captured blood pressure data points in an AIMS database. 
Live annotated artifacts were frequently not identified as 
artifacts retrospectively (sensitivity of 0.32). The learning 
algorithms we subsequently developed to artificially iden-
tify artifacts were not able to adequately model artifacts 
which were annotated during live observations. Although 
the performance of these algorithms increased when retro-
spective annotations were modelled, the overall performance 
remained moderate.

Artifacts in invasive blood pressure measurements have 
different causes, such as movement or measurement tech-
nique artifacts. Some of the artifacts were short lasting and 
harder to pick up retrospectively, while others were longer 
lasting (Table 4). For example, movement artifacts according 
to artifact definition 1 were in only 2% of the cases iden-
tified as an artifact retrospectively (definition 3). On the 
other hand, the artifacts according to definition 2 (> 30 s 
of artefactual signal) were retrospectively identified in 13% 
of the cases. In the present study, the AIMS used a calcu-
lated median of one minute of data to store data points. It 
therefore makes sense that short lasting artifacts have not 
resulted in artifactual data points within the AIMS data-
base, which could be identified retrospectively. Nonetheless, 
we would have expected a larger difference as a result of 
the effect described above. In addition, we found variation 
over different causes of artifacts in retrospective positively 
identified artifacts. These differences likely were a result 

of differences in information availability per situation. For 
example, from the AIMS record data points with systematic 
errors in blood pressure measurement due to the height of 
artery sensor placement were easier identified, than artifacts 
caused by movement.

In the present study we present different methods to 
manually define artifacts in AIMS data, and compare these 
different definitions with each other. Others have analyzed 
differences between artifact annotations, but comparisons 
were done to compare different raters, who received the 
same annotation task, i.e. retrospective annotation. The 
present study shows that it is not only important to describe 
who annotated data, but also when and how data points were 
marked as artifacts, in order to make research reproducible 
[7].

We have prospectively collected data during a period 
of twelve weeks. This resulted in a reasonable quantity of 
observations. Nevertheless, the incidence of artifacts in the 
present study was quite low (2%). The amount of data avail-
able for the learning algorithms might thus have been too 
small. We observed procedures mainly in the maintenance 
phase of surgery, as we expected that it would be more com-
plex to label artifacts precisely in the induction and emer-
gence period where a lot of things happen at the same time. 
The artifact incidence was similar to what was previously 
found during maintenance in pediatric surgery, which was 
also lower than during induction or emergence [3]. Further-
more the type of surgery could have affected the incidence of 
artifacts, for example the cohort had a high portion of neuro-
surgery procedures, during which movement of the patient is 
limited and the surgical field is further away from the blood 
pressure sensor than other types of surgery.

Table 5  Learning algorithms, to predict artifacts in AIMS vital signs data

Artifact definition Function Hyper parameters fourfold cross-validation Performance test dataset

Kappa Sens Spec PPV Kappa Sens Spec PPV

1: Any artifact glmnet alpha = 1, lambda = 2.78e-06 0.168 0.124 0.989 0.415 0.053 0.041 0.991 0.250
nnet size = 20, decay = 1e-07 0.166 0.240 0.939 0.209 0.087 0.158 0.941 0.123
svmRadial sigma = 0.001, C = 1000 0.216 0.204 0.974 0.329 0.201 0.200 0.969 0.304

2: > 30 s of artifact glmnet alpha = 1, lambda = 3.59e-05 0.285 0.241 0.992 0.401 0.066 0.062 0.992 0.100
nnet size = 8, decay = 0.01 0.226 0.277 0.979 0.221 0.118 0.154 0.976 0.129
svmRadial sigma = 5e-04, C = 1000 0.215 0.182 0.991 0.309 0.183 0.176 0.991 0.214

3: Retrospective annotation glmnet alpha = 1, lambda = 2.78e-06 0.389 0.339 0.995 0.671 0.447 0.407 0.991 0.524
nnet size = 20, decay = 0.001 0.426 0.353 0.994 0.597 0.588 0.500 0.996 0.733
svmRadial sigma = 5e-04, C = 100 0.530 0.438 0.996 0.716 0.524 0.429 0.995 0.706

3: Retrospective (additional 
data points)

glmnet alpha = 1, lambda = 4.64e-04 0.462 0.315 1.000 0.923 0.399 0.275 0.999 0.759
nnet size = 10, decay = 1 0.560 0.469 0.997 0.721 0.481 0.386 0.997 0.659
svmRadial sigma = 5e-04, C = 50 0.552 0.431 0.998 0.790 0.651 0.521 0.999 0.884

4: 1/5 Hz data glmnet alpha = 1, lambda = 2.78e-06 0.245 0.169 0.997 0.592 0.100 0.056 0.999 0.615
nnet size = 9, decay = 1 0.468 0.395 0.993 0.611 0.538 0.486 0.993 0.627
svmRadial sigma = 0.005, C = 50 0.616 0.497 0.998 0.840 0.631 0.518 0.997 0.830
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In the present study, only one researcher annotated the 
data retrospectively, which can be considered a limitation. 
We could have improved quality of annotation when more 
than one researcher had annotated the data. On the other 
hand, because differences between these raters also need 
to be evaluated, the time invested in an extra person who 
annotated the data, would have been considerably more 
than twice the time which we spent thus far. Also the goal 
of this research was not to compare raters with each other, 
as has already been done previously [7].

We used two definitions to translate the live observa-
tions to an artifact definition (Definition 1 and 2), using 
the duration of the artifacts. Another approach could have 
been to combine the severity of the artifact, for example 
the deviance from baseline, with the duration of the arti-
fact. In theory short extreme artifacts (e.g. flush events) 
can affect analysis differently than long but less extreme 
artifacts (e.g. height of the pressure sensor). In our situ-
ation the duration of artifacts was more important since 
our system stores the median of 12 consecutive blood pres-
sure measurements. Therefore we only used the duration 
of artifacts, but in other situations this definition might be 
too limited.

We used two research assistants for live observations, 
which could result in differences in the way data were anno-
tated. We observed minor differences in artifact incidence in 
each group of procedures, which were probably due to differ-
ences in procedure types (Table 1). The number of artifacts 
according to retrospective annotation (definition 3) varied 
in a similar way, between these two subgroups (data not 
presented). Unfortunately, we have not performed a double-
code observation to compare both observers adequately.

We have purposefully used only automatically collected 
physiologic data captured during the anesthetic procedure 
as source of features. We made this choice to ensure that 
resulting methodology and workflow will be generalizable, 
even when no other data than vital signs are available. This 
approach makes the methodology broadly applicable. On 
the other hand we tried to model a (human) decision, i.e. 
manual artifact identification, with limited information, from 
which the performance of the learning algorithms would 
have suffered. We saw that none of the learning algorithms 
performed well enough to apply for future research, as pre-
sented here. We showed in a post-hoc analysis that the per-
formance could improve by adding additional data points. 
Nevertheless the information that was available to these 
algorithms was probably still too limited. To understand 
this concept better, future research could focus on adding 
not only more observations but also more features to the 
model, which are commonly available in databases used for 
research. For example patient characteristics, procedure type 
and medication administration or other events around the 
data point of interest could be added.

4.2  Implications

Before we can say anything about the implications of this 
study we first need to consider the definition of an artifact. 
Is every measurement in an AIMS database, based on a dis-
turbed or a not perfect signal an artifact? Or does a live 
observed disturbance in a signal only produce an artifact, 
when the stored data point is different than what we expect 
for a patient at that particular time during anesthesia? But in 
the latter case, how do we define an expected value? These 
questions show that artifact annotation is a subjective matter, 
and a question of definition. It is important that researchers 
report what they considered to be artifacts, even when this 
process was done manually.

Despite this issue in defining artifacts, artifact annota-
tion could still be automated using learning algorithms. The 
present study showed that this is not straightforward and 
might still require an investment of time to collect manually 
annotated data points for training. We live observed around 
95 h of anesthesia, while using retrospective data from 328 h 
only improved the performance of the learning algorithms 
marginally. Observing this much data live would have been 
very labor intensive and likely not feasible. In contrast, retro-
spectively annotating these data took us around three hours 
with a custom made registration application by a single per-
son. This makes retrospective annotation better suitable to 
remove artifacts from research data, than live annotation.

Even though machine learning algorithms performed 
poorly in the present study, our approach is still insightful 
for those who want to apply similar annotation tools and 
models on their own AIMS data. Future research could focus 
on improving the performance and develop application of 
the methods presented in the present paper. To minimize 
time spend on manual data collection, we suggest optimiz-
ing this process using an active learning strategy. With this 
strategy, only data points are annotated, which contribute 
significantly to the learning algorithm. This could reduce the 
time spend on annotating data significantly [18, 19].

5  Conclusion

Identification of artifacts in invasive blood pressure meas-
urements depends on the moment of annotations (live ver-
sus retrospective) and the person who annotated the data 
points. Nevertheless, these different artifact definitions could 
be modelled with learning algorithms in a similar way. The 
performance of these algorithms was poor in the present 
study and should be improved before applying in the future. 
A substantial amount of manually annotated data is still 
required to train these algorithms. As a positive by product 
of such an effort, researchers are forced to define explicitly 
what artifacts in their data are.
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