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SUMMARY

The standard deviation score (SDS) is a powerful tool for screening for growth-related problems. However,
referral rules of the type ‘if SDS(Y)<d, then refer’ (for some constant d) are not optimal for answering
the question: ‘Does this child with measurement Y belong to the reference or to the diseased population?’.
If the growth standard for the diseased population is known, then the likelihood ratio (LR) and the log-
likelihood ratio (LLR) can be calculated for individual measurements. Rules of the type ‘if LLR(Y)<e,
then refer’ are uniformly the most powerful test for any constant e, implying that their receiver operating
characteristic curves are above those for all other possible tests based on Y. As an empirical demonstration,
both types of rules are applied to longitudinal growth data comparing a group with diagnosed Turner
syndrome and a reference group from birth to 10 years of age. Conforming with theory, the LR rules were
found to be superior to the SDS rules in terms of sensitivity and specificity. We conclude that the LR is
the natural measure for two-group studies that can be easily calculated for individual measurements. The
LR is firmly rooted within both statistical and decision theory and can be used to estimate the absolute
probability of disease. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The standard deviation score (SDS) is a widely used measure for screening and referral in human
growth [1]. The height SDS measures how the height Y of a child deviates from the mean of the
reference population of children of the same age and sex. The reference population Py typically
consists of healthy children and is often represented by a height diagram, like the British [2] and
Dutch [3]. The SDS values near zero indicate that a child’s height is normal for age, whereas
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values beyond the £2 SD limits indicate that the child is either very tall or very short. The SDS
is an extremely useful measure that corrects for age and sex differences and enables sensible
comparisons across age.

In many situations, one would like to evaluate the probability of a specific disease given one or
more height measurements Y. For example, a girl who is extremely short for age has an elevated
chance of Turner syndrome (TS). Her height SDS measures how typical her height is within the
general reference population Py. It does not, however, tell how typical her height is within the
diseased population P; of girls with the disorder. Also, the SDS alone will not predict how likely it
is that the girl actually has the disease. When determining whether the child has a specified disease,
more powerful diagnostic measures exist, such as the likelihood ratio (LR) and the log-likelihood
ratio (LLR).

The LR can be understood by imagining the possibility of rwo SD scores for one Y: the
conventional SD score zq for the reference population and an alternative SD score z for the diseased
population. Of course, z; can be calculated only if appropriate growth references are available for
the disease of interest, but many such standards have been developed, e.g. for TS [4], Noonan
syndrome [5], Prader—Willi syndrome [6], Silver—Russell syndrome [7], cri-du-chat syndrome [8],
and so on. The LR combines the information provided by zp and z; to answer the question ‘Does
this child belong to the reference (Pp) or to the diseased (P;) population?’. The LR is related to
disease probability and can be used to estimate the costs of different screening scenarios. Similar
to the SDS, the LR can be calculated for each individual data point.

This paper describes how the LR works in the context of height measurements to detect TS. The
next section shows how to calculate the LR from two SDS scores, describes some of its properties,
discusses the optimality of the LR, and explains how the LR improves upon screening rules that
rely on SDS. Dutch data on TS are used to illustrate the principles.

2. METHOD

2.1. Likelihood ratio

The LR is a statistic for summarizing diagnostic accuracy. The LR measures how many times more
likely patients with the disease are to have a particular result Y than patients without the disease.
Let fo and f) denote the density function for reference and diseased populations, respectively.
The LR for a result Y is defined by

LR(Y) =? (D

0

Figure 1 illustrates the key concepts. Figure 1(a) contains two normal distributions. The dis-
tribution on the right-hand side corresponds to the variation in measurement Y in the non-
diseased population Py. Here, Py is taken as the height reference standard of 6-year-old Dutch
girls [3]. The distribution is normal with known mean py=118.7cm and known standard de-
viation g =5.0cm. The distribution on the left-hand side represents how Y varies in the dis-
eased population P;, 6-year-old girls with TS [4]. This is also normal distribution, with mean
t; =104.5cm and standard deviation o1 =4.2cm. Thus, at the age of 6, girls with TS are on
average 0 = g — pi; = 118.7 — 104.5 = 14.2 cm shorter. In the figure, the vertical axis is a relative
frequency or a probability density.
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Figure 1. Illustration of the likelihood ratio for screening or growth-related disorders. (a) fo and f; are
the density values at a height of 109 cm in the reference and syndrome populations. The likelihood ratio
LR = fi/fo. (b) Absolute probability of Turner syndrome as a function of height.

2.1.1. Numerical example. Suppose a 6-year-old girl has a height ¥ =109 cm. This girl is short
when compared with the Dutch reference (i.e. zo = (Y — ) /00 = (109 —118.7)/5.0 = —1.94 SD),
but taller than girls with TS (i.e. z1 = (Y — p;)/01 = (109 — 104.5)/4.2 = +1.07 SD). Figure 1(a)
shows that at 109 cm the density in population Py is equal to fo= f (Y, 1, o*%) = (109, 118.7,
5.0%) =0.0122, where f (Y, u, o) is the density at value Y in a normal distribution with mean y and
variance ¢2. In population Pi, the density is equal to f1 = f(Y, yy, 0'%) = (109, 104.5, 4.22) =
0.0535. The LR is thus equal to LR(Y) = f1/f0=0.0535/0.0122 = 4.4. The interpretation of the
LR(Y) is as follows: observing a height of ¥ =109cm is 4.4 times more likely in the Turner
population P; than in the non-diseased population Fy.

The higher the value of LR(Y), the stronger the evidence for the presence of the disease. A
value of LR(Y) =1 indicates that the measurement Y is equally likely in populations Py and
P;. In Figure 1, this occurs at ¥ =111.2cm. In this case, a measurement ¥ = 111.2 cm does not
discriminate between populations. Note that the LR is a relative measure and has nothing to do
with the prevalence of the disease. If the pre-test probability is low, then even very large LR(Y)
will not produce a large post-test probability of disease. Roberts [9] suggested that an LR(Y) of 10
provides strong evidence for the presence of the disease, although in many practical applications
one should also take the prevalence of the disease into account.

LR(Y) can attain values between zero and infinity. It is generally more convenient to work with
the natural logarithm of the LR, the LLR. One may calculate LLR(Y) = In( f1/fo) = In(f1)—1In(fp).
If the functions are fy= f (Y, y, ag) and f1= f(, uy, 0%), then LLR(Y) can be calculated from
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zo and z1 as [9]
LLR(Y) =0.5(z — z3) + In(o) — In(a1) )

The first part compares the SD scores of Y under populations Py and P;. The second part compares
the standard deviations. In the special case zg = —z; and o9 = g1, we find the points of indifference
LLR(Y)=0 and LR(Y) =1, where Y is equally likely under both Py and P;.

2.1.2. Numerical example. In Figure 1, we find zo=—1.94 SD and z; = +1.07 SD at Y = 109 cm.
Substituting these values gives LLR(Y) = (—1.94% —1.07%) /2 +1In(5.0) —In(4.2) = 1.48. The value
of LR(Y) is equal to exp(1.48) =4.4, as before.

2.2. Properties of the LR

The LR-statistic is well known in the statistical literature and possesses special properties.

2.2.1. Optimality. Suppose any cutoff e is taken and that all subjects with score LR(Y)>e are
classified as positive for disease. This test is the optimal test in the sense that its receiver operating
characteristic (ROC) curve is everywhere above all other possible tests based on Y. This property
is a direct consequence of the Neyman—Pearson fundamental lemma, which states that a test
LR(Y)>e is the uniformly most powerful test [10, 11, Chapter 3]. Pepe [12, pp. 71, 269] provides
an accessible description of the Neyman—Pearson theory in the context of medical tests.

2.2.2. Prevalence and post-test disease probability. The LR quantifies the knowledge about the
presence of the disease that is gained through measurement Y. Define D as a binary random variable,
coded as D =1 in the diseased population Pj, and as D =0 in the reference population Py. Let
P(D =1) be the disease probability before knowing Y (e.g. the prevalence), and let P(D =1|Y)
be the disease probability given the measurement Y. Define the complement probabilities as
P(D=0)=1—-P(D=1) and P(D=0|Y)=1— P(D=1|Y). Using Bayes rule, the post-test
odds P(D=1|Y)/P(D =0l]Y) of disease can be written as

P(D=1]Y) P(Y|D=1)P(D=1)
P(D=0Y) P(Y|D=0)P(D=0)

3)

where P(Y|D =0) and P(Y|D =1) are the probabilities of obtaining Y in Py and P;. Note that
LR(Y)=P(Y|D=1)/P(Y|D =0); hence, multiplying the pre-test odds P(D =1)/P(D =0) by
LR(Y) produces the post-test odds. In practice, one could use (3) to calculate the posterior probabil-
ity of disease by setting P (D = 1) equal to the disease prevalence. If the pre-test disease probability
P(D =1)islowand LR(Y) is not huge, (3) is approximated by P(D =1|Y)~LR(Y) x P(D =1).

2.2.3. Numerical example. For TS, the prevalence in the general population is low, about 1:2500
girls. The probability of TS for a 6-year-old girl with a height of 109 cm is thus approximated by
P(D=1)~4.4 x1/2500=0.00176. Figure 1(b) illustrates how P (D =1) varies with height. It
appears that P(D =1) is sizeable only for the extremely short girls. At 107.7cm, LR(Y) = 10,
whereas the P(TS) is only 0.004. Observe that, despite a ‘high’ LR of 10, 99.6 per cent of the
girls with a height of 107.7 cm will not have TS.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1527-1538
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2.2.4. Binormal ROC curves. Suppose that Y is normally distributed as ¥ ~ N(y, o*%) and Y ~
N(yy, o-%) in populations Py and Pj, respectively. For some threshold value c, let the false positive
fraction FPF(c) = P (Y <c|D =0) = ®((c — uy)/0o) and the true positive fraction TPF(c) = P(Y <
c|D=1)=®((c — u;)/01), where ® is the cumulative normal distribution function and the sensi-
tivity of a test Y <c is equal to TPF(c), whereas the specificity = 1 —FPF(c). The ROC plot displays
TPF(c) against the FPF(c) for an increasing sequence of thresholds c. For binormal references,
TPF(c) and FPF(c) are related as follows:

TPF(c) = ®(a + b~ ' (FPF(c)) (4)

where a = (ug— uy)/01 and b =0¢/01 [12, p. 82]. One could use this result to calculate sensitivity
at a specific cutoff. For example, for a test ¥ <109 cm, we find FPF(109) = P(Y <109|P =0) =
®(—1.94) =0.026. The sensitivity is equal to TPF(109) = ®(+41.07) = 0.858. Alternatively, apply-
ing (4) at a FPF(109), we find TPF(109) = ®((118.7 — 104.5)/4.2 4+ (5.0/4.2) x o! (0.026)) =
0.858.

2.3. SDS versus LR rules

The possible classification rules for a measurement Y are Y <c, SDS(Y)<d and LLR(Y)>e for
some ¢, d, or e. If we know the distribution of Y, we can choose ¢, d, or e and calculate the other
two cutoff values. As long as the relation between Y and LLR(Y') is monotonic, it does not matter
which rule we take.

Figure 2 shows how potential cutoff points d and e vary with height for 6-year-old Dutch
girls. Both SDS and LLR are monotonically related to height. The relationship between SDS and

-4 T T T -6
100 105 110 115 120
Height (cm)

Figure 2. SDS (left axis) and LLR (right axis) values as a function of height for Dutch 6-year-old girls.
Both SDS and LLR are monotonically related to height (SDS linear, LLR quadratic).
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height is linear, whereas that between LLR and height is quadratic. For a 6-year-old girl, the rules
Y<109cm, SDS(Y)<—1.94SD and LLR(Y)>1.48 are all equivalent and have the same (local)
sensitivity and specificity.

Complications arise if the distribution of Y varies with age or sex. In that case, fixing c, d, or
e to some value generally corresponds to very different test strategies. A rather absurd example is
the test Y <109 cm at age 2 (instead of age 6). The test would be true for everyone and thus have
100 per cent sensitivity and O per cent specificity. This leads to the question of which rule should
be taken. The Neyman—Pearson lemma states that the rule LLR(Y)>e is superior to any other
rules based on Y. Let us now look at the interpretation of the rules SDS(Y)<d and LLR(Y)>e in
more detail.

Current height screening rules generally assume equal specificity across age. For example, height
screening rules such as ‘if SDS(Y)<d, then refer child’ imply identical specificity across age. The
rule does not take any aspects of the diseased group into account. Note that the sensitivity of
the rule will critically depend on ‘how far’ the diseased population is from the reference. If this
distance varies with age, then the sensitivity of the SDS(Y)<d rule will generally also depend on
age. For the same reason, the LLR(Y) value corresponding to the test SDS(Y)<d at some age
will not be constant across age.

An alternative is a rule of the type ‘if LLR(Y)>e, then refer child’. This rule is expected to be
more efficient since the strength of the evidence (as measured by the LLR) that the child is a case
will be identical across age. In rules based on LLR(Y'), both sensitivity and specificity depend on
age, whereas LLR(Y) is constant.

2.3.1. Numerical example. At two years of age, the parameters are p,=87.5, u; =80.6, 69 =3.2
and o1 =3.1. The cutoff point at age 2 for which LLR(Y) = 1.48 must solve for ¢ in f(c, 80.6,
3.1)— f(c, 87.5,3.2) =1.48. The solution is c =81.9cm, so d = (81.9—-87.5)/3.2 = —1.75. Thus,
at age 2, the tests Y<81.9cm, SDS(Y)<—1.75 and LLR(Y)>1.48 are equivalent. The local
specificity of this test is 0.960 and the local sensitivity is 0.662, both of which are inferior to
the test LLR(Y)>1.48 at age 6 (specificity: 0.974, sensitivity: 0.858). This reflects that it is more
difficult to find cases at age 2 than at age 6. In comparison, the specificity of the test SDS(Y)<—1.75
is constant at 0.960 and has a local sensitivity of 0.903 at age 6. Thus, the tests SDS(Y)<d and
LLR(Y)>e are different at different ages.

The Neyman—Pearson lemma implies that the rule LLR(Y)>e is preferable if there are two
or more groups. To see how this works, suppose the sample consists of two groups, A and B,
of sizes np and np, respectively. If TPF5 and TPFp are the sensitivities per group, then the
sensitivity in the groups combined is equal to TPF = (npATPFp + ngTPFg)/(na + np). Similarly,
FPF = (nAFPFp + ngFPFp)/(na + ng). Suppose that we apply two rules on the sample: SDS<d
and LLR(Y)>e. For each d, we can always choose e such that FPF in the sample is equal under
both rules. The Neyman—Pearson lemma implies that TPF(LLR)>TPF(SDS). Alternatively, we
could equate sensitivity and find FPF(LLR)<FPF(SDS).

2.3.2. Numerical example. In the above example, the specificity of rule SDS(Y)<—1.75 is 0.960,
with sensitivities 0.662 (2 years) and 0.903 (6 years). If n4 =np, then TPF(SDS) =0.7824. The
specificity of rule LLR(Y)>1.26 is 0.960, with sensitivities 0.699 (2 years) and 0.876 (6 years).
In this case, TPF(LRR) =0.7872; hence, indeed TPF(LRR)>TPF(SDS). Note that the gain in
sensitivity is rather small here, but, as we will see, in practice the difference can be much larger.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1527-1538
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2.4. Materials

Two samples of data were analysed. Longitudinal height data from 777 girls with untreated TS were
collected from several sources. A reference sample of longitudinal height data was retrospectively
obtained for a cohort of 489 girls born in 1989 and 1990 in Landgraaf. More details on these data
can be found elsewhere [13].

2.5. Statistical methods

SDS and LLR values were graphically compared in both reference and disease groups by plotting
the individual data points against age. Two age-dependent screening rules were formulated, one
using SDS and the other using the LLR. The rules were operated on the child level. Both rules refer
a girl if at least one of her height measurements is beyond the stated cutoff point. The discriminatory
power of both rules was compared through case—control simulation [13]. The cutoff points d and e
were varied continuously in the range —10 and +20. The sensitivity and specificity were calculated
at each cutoff value. The results are presented as two curves in a ROC plot.

3. RESULTS

Figure 3 plots the individual SDS values according to age, for both the reference girls and the
TS girls. The average SDS of the reference girls is slightly lower than the national reference.
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Figure 3. Individual SDS values plotted against age for the control and Turner samples.
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Figure 4. Individual LLR values plotted against age for the control and Turner samples.
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Figure 5. ROC plot for the LLR and SDS screening rules. All ages (0-10 years) are combined. A child is

referred if it meets a referral criterion on at least one occasion. Sensitivity and specificity are properties of

the referral procedure covering ages 0-10 years. The plot shows that rules based on the LLR are superior
to those based on SDS for the detection of TS.
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This finding was expected because these girls are living in a part of the Netherlands were children
and are somewhat shorter than the general Dutch population [3]. By contrast, the mean SDS of
the Turner group has a clear downward trend. The height gap between the reference and TS girls
grows with age. This pattern suggests that screening rules of the type SDS(Y)<d may work well
for the older girls, but are less useful during infancy and early childhood.

Figure 4 presents the same data on the LLR scale. As before, the probability of TS increases
with age in the TS group. More interestingly, the mean of the control group has a downward trend.
This means that, as age increases, it becomes less probable that these girls will have TS. Note that
this information is not present in Figure 3.

Figure 5 shows the ROC plot with the SDS and LLR rules for all ages combined. Figure 4
shows that the discriminatory power of the LLR rules is superior to that of the SDS rule. The
differences are especially large in the area where the specificity is around 95 per cent, the area
that is generally of most interest for screening purposes.

4. DISCUSSION

This paper introduces the likelihood ratio (LR) and the log likelihood ratio (LLR) in the context
of screening for a particular growth-related disease. The LLR measures how much more likely
the observation is in the diseased than in the reference group. The LLR is easy to calculate for
individual measurements, is firmly rooted within both statistical and decision theory, and can be
used in screening settings to estimate the absolute probability of the disease, given the pre-test
probability. We provide both theoretical and empirical evidence that screening rules based on the
LLR discriminate better than rules based on the SDS.

The LR is the natural companion of the SDS. Until the 1930s, statistical inference was mainly
concerned with single (null) distributions. The LR was introduced by Fisher [14] and was given
its modern interpretation by Neyman and Pearson [15]. The LR naturally arises out of their notion
that statistical inference involves both a null and an alternative hypothesis. Although the single
group approach—and the associated SDS and percentile scores—still dominates the field of human
growth, attention seems to be shifting towards the two-group perspective [16]. The LR is the natural
measure for two-group studies.

The improved performance of the LR rule occurs if the overlap between the non-diseased (Pp)
and diseased (P;) populations varies with age. At a given age, one can always choose ¢, d or e
such that the three types of classification rules Y <c, SDS(Y)<d and LLR(Y)>e have identical
sensitivity and specificity. However, the relationship between ¢, d, and e depends on the amount
of overlap of the two distributions, and thus on age. One could fix ¢, d or e and calculate the other
two. The Neyman—Pearson fundamental lemma tells us that fixing e across age is preferable to
fixing ¢ or d because that provides us with the uniformly most powerful test.

Since ¢, d and e are related, in practice one can perform all screening in the Y-metric, i.e. by
applying the Y <c rule. In this case, the cutoff values ¢ need to vary by age and sex. If there is
no diseased population, we may calculate time-varying values ¢ such that d is constant across age
and sex, which is equivalent to assuming constant specificity. If we screen for a target disease,
then the uniformly most powerful test corresponds to values for ¢ such that e is constant across
age and sex, which fixes the amount of evidence as measured by the LR. Thus, in practice, there
is no need to calculate either the SDS or the LLR for a given child. We only need access to a
table of appropriate age- and sex-dependent referral values c, e.g. in cm or inches. Without doubt,
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the ability to perform optimal screening tests by just comparing a raw measurement ¥ with a
tabulated value c is a tremendous practical benefit.

As an illustration of the above point, Table I provides age-specific cutoff points for rules
SDS<2.5 and LLR>3 calculated from the Dutch and Turner references. The column labelled ‘c’
contains the cutoff values for height (cm). The SDS rule fixes d and the specificity over age, and
allows e to vary. The LLR rule fixes e and allows d to vary. Note that the differences between
the LLR and SDS rules in terms of absolute height or the SDS scale are generally not large. For
younger children the LLR rule is stricter than the SDS rule. The differences between the Dutch
and Turner references are relatively small for young children; hence, the LLR rule becomes more
conservative by increasing specificity. The situation is reversed for older ages.

Screening for more than one disease at the same time is often desired. Michael Hermanussen
(personal communication) made an interesting suggestion for calculating multiple absolute prob-
abilities for different diseases. This would take the prevalence of disorder into account. The list
of disease-specific probabilities is presented as evidence to the clinician. There is yet no practical
experience of such methods. To be realistic, the potential for discriminating between different
disorders that all lead up to short stature may be limited. On the other hand, the fact that this
approach takes the prevalence into account may turn out to be a great asset. One of the reviewers
pointed out a connection with the work of Spiegelhalter and Knill-Jones [17], who discussed a
Bayesian decision tree for multiple possible diagnoses in which the ‘weight of evidence’ is a LLR.
Application of this Bayesian decision tree approach to multiple diagnoses in human growth is a
promising line of further development.

The LR as described takes only height into account and ignores any other clinical symptoms that
might be present. It is, in principle, possible to combine several independent pieces of evidence
into one LR. This also provides a way to include the child’s own measurements in longitudinal
settings. Such options would be useful extensions of the present methodology.

ACKNOWLEDGEMENTS

I thank Ine Bonnemaijer for her cooperation in obtaining the reference group data, and Anita Hokken-
Koelega, Gladys Zandwijken, Sabine de Muinck Keizer-Schrama and Ciska Rongen-Westerlaken for their
cooperation in obtaining the Turner data. Jan Maarten Wit provided useful comments on a previous
version of the manuscript. I thank the associate editor and two anonymous referees for their insightful
comments, which helped in improving the presentation. This research was financially supported by grant
number 2100.0050 from Zorgonderzoek Nederland (ZON) entitled ‘Objectivering van verwijscriteria bij
biometrisch onderzoek in de jeugdgezondheidszorg: Pilot Turner Syndroom’. The funding source had no
involvement in the work.

REFERENCES

1. Cole TJ. Do growth chart centiles need a face lift? British Medical Journal 1994; 308(6929):641-642.

2. Freeman JV, Cole TJ, Chinn S, Jones PRM, White EM, Preece MA. Cross sectional stature and weight reference
curves for the UK, 1990. Archives of Disease in Childhood 1995; 73:17-24.

3. Fredriks AM, van Buuren S, Burgmeijer RJ, Meulmeester JF, Beuker RJ, Brugman E, Roede MIJ, Verloove-
Vanhorick SP, Wit JM. Continuing positive secular growth change in The Netherlands 1955-1997. Pediatric
Research 2000; 47:316-323.

4. Rongen-Westerlaken C, Corel L, van den Broeck J, Massa G, Karlberg J, Albertsson-Wikland K, Naeraa RW,
Wit JM. Reference values for height, height velocity and weight in Turner’s syndrome. Swedish Study Group
for GH treatment. Acta Paediatrica 1997; 86:937-942.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1527-1538
DOI: 10.1002/sim



1538 S. VAN BUUREN

5. Ranke MB, Heidemann P, Knupfer C, Enders H, Schmaltz AA, Bierich JR. Noonan syndrome: growth and
clinical manifestations in 144 cases. European Journal of Pediatrics 1988; 148:200-227.

6. Grauer ML, Wollmann HA, Schulz V, Ranke MB. Reference values for height and weight in Prader—Willi
syndrome based on 315 patients. Hormone Research 1997; 48(Suppl. 2):54.

7. Wollman HA, Kirchner T, Enders H, Preece MA, Ranke MB. Growth and symptoms in Silver—Russell syndrome:
review on the basis of 386 patients. European Journal of Pediatrics 1995; 154:958—968.

8. Marinescu RC, Mainardi PC, Collins MR, Kouahou M, Coucourde G, Pastore G, Eaton-Evans J, Overhauser J.
Growth charts for cri-du-chat syndrome: an international collaborative study. American Journal of Medical
Genetics 2000; 94(2):153-162.

9. Roberts RS. Likelihood ratio with diagnostic tests. In Encyclopedia of Biostatistics, Armitage P, Colton T (eds).
Wiley: NY, 1998; 2248-2253.

10. Neyman J, Pearson ED. On the problem of the most efficient tests of statistical hypotheses. Philosophical
Transactions of the Royal Society of London, Series A 1933; 231:289-337.

11. Lehmann EL. Testing Statistical Hypotheses (2nd edn). Wiley: New York, 1986.

12. Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press:
Oxford, 2003.

13. van Buuren S, van Dommelen P, Zandwijken GR, Grote FK, Wit JM, Verkerk PH. Towards evidence based
referral criteria for growth monitoring. Archives of Disease in Childhood 2004; 89(4):336-341.

14. Fisher RA. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal
Society of London, Series A 1922; 222:309-368.

15. Neyman J, Pearson ED. On the use and interpretation of certain test criteria for purposes of statistical inference.
Biometrika 1928; 20A, Part 1. 175-240, Part II: 263-294.

16. Hindmarsh PC, Cole TJ. Height monitoring as a diagnostic test. Archives of Disease in Childhood 2004; 89(4):
296-297.

17. Spiegelhalter DJ, Knill-Jones RP. Statistical and knowledge-based approaches to clinical decision-support systems,
with an application to gastroenterology (with discussion). Journal of Royal Statistical Society, Series A 1984;
147:35-76.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1527-1538

DOI: 10.1002/sim



