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SUMMARY

This paper studies a non-response problem in survival analysis where the occurrence of missing data in the
risk factor is related to mortality. In a study to determine the influence of blood pressure on survival in the
very old (85# years), blood pressure measurements are missing in about 12)5 per cent of the sample.
The available data suggest that the process that created the missing data depends jointly on survival and the
unknown blood pressure, thereby distorting the relation of interest. Multiple imputation is used to impute
missing blood pressure and then analyse the data under a variety of non-response models. One special
modelling problem is treated in detail; the construction of a predictive model for drawing imputations if the
number of variables is large. Risk estimates for these data appear robust to even large departures from the
simplest non-response model, and are similar to those derived under deletion of the incomplete records.
Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

A problem in survival analysis occurs when data are missing on one or more risk factors. The
standard response to this problem is to simply exclude these individuals from the analysis. Apart
from being a waste of costly collected data, this practice could lead to invalid results if the
excluded group is a selective subsample from the entire sample.

We were confronted with such a problem in the analysis of the relation between blood pressure
(BP) and mortality in persons over 85 years of age.1 The main interest of that study was
to determine the influence of measures of health on the relation between mortality and BP
in the elderly. It has been found that, in this age group, low BP is associated with increased
mortality.2,3 This has raised concerns as to whether prescription of anti-hypertensive drugs
could inadvertently shorten life. To uncover the mechanism that governs the effect, the
idea was to investigate whether the observed relation could be attributed to differences in
health between different BP groups. If so, BP is more likely to be a symptom than a cause
of bad health, which would diminish concerns about possible life-shortening side-effects of the



hypertension treatment. More in particular, the scientific interest focused on the comparison of
two models, A and B:

A. the relation between mortality and BP adjusted for age and sex;
B. the relation between mortality and BP adjusted for age, sex and health.

The main analysis consists of a Cox regression of mortality on BP, adjusted for age, sex and
health. The detailed comparison of model A and B as well as its implications is reported elsewhere.4

The analysis is based on a data set in which approximately 12)5 per cent of the blood pressure
measurements are missing. As will be indicated in Section 2, we suspected that individuals with
lower blood pressures and higher mortality risks had fewer BP measurements. Excluding the
incomplete cases from the analysis could thus produce deflated mortality estimates for the lower
blood pressure groups, thereby yielding a distorted impression of the influence of BP on survival.
The present paper reports our strategy to handle this problem.

Several approaches for dealing with incomplete covariates in survival analysis exist.5—8 These
methods all rely on the assumption that the non-response probabilities do not depend on any
unobserved information, that is, that the data are missing at random (MAR).9 Since this is
a dubious assumption with our data, we used an alternative approach based on multiple
imputation.10,11 The idea is to create a small number (m) of completed matrices in which the
missing values have been replaced by plausible values. The number of imputations needed
depends on the amount of missing information, but is usually quite small, often 3 or 5. The
variability among the m imputations reflects the uncertainty about the hypothetically observed,
but unknown, value. Under quite general conditions, it has been shown that (i) if the complete
data model leads to valid inferences in the absence of non-response and (ii) if the imputation
procedure is proper with respect to the non-response mechanism, then multiple imputation yields
valid inferences. The term ‘proper’ refers to a set of technical conditions that delineate the class of
distributions from which imputations can be created (see pp. 118—119 of Rubin10). A more
accessible description can be found in Schafer’s book.12

Of particular interest is that multiple imputation allows display of the sensitivity of the
inferences to different mechanisms that could have created the non-response. There is no need to
assume one ‘true’ response model and stick to that. Several plausible mechanisms can be tried. If
none of these mechanisms changes the relation of interest, then inference is robust against the
specified causes of the non-response. On the other hand, if the results do depend on the specific
form of the non-response model, then more precise statements can be made regarding the exact
conditions under which the obtained results apply.

The present paper focuses on a number of practical aspects the analyst encounters when
dealing with missing data problems: (i) what information should be used for choosing between
different non-response mechanisms; (ii) how to choose a useful set of imputation predictors from
a large set of variables; (iii) how to generate the actual imputations when the variables are of
mixed type; and (iv) how to specify the different models for the non-response. We introduce
a convenient and quite general regression switching scheme for generating the actual imputations.

2. DESCRIPTION OF THE PROBLEM

2.1. The Leiden 85 1 Cohort

The cohort under study13,14 consists of 1236 citizens of Leiden who were 85 years or older on
1 December 1986. These individuals were visited by a physician between January 1987 and May
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1989. A full medical history, information on current use of drugs, a venous blood sample, and
other health-related data were obtained. Blood pressure (BP) was routinely measured during the
visit. Apart from a few individuals who were bedridden, BP was measured while seated.
A mercury manometer was used and BP was rounded to the nearest 5 mmHg. Measurements
were usually taken near the end of the interview. The mortality status of each individual on
1 March 1994 was retrieved from administrative sources. The cohort will be referred to as the
‘Leiden 85#Cohort’.

Of the original cohort, a total of 218 died before they could be visited, 59 people did not want to
participate (some because of health problems), 2 emigrated and 1 was erroneously not inter-
viewed, so 956 individuals were visited. In an early analysis, we found that the effect of analysing
a subsample from the entire cohort can be accounted for by taking the date of the home visit as
the start of the observation period, and adjusting the analysis for sex and age.1 This type of
selection will therefore not be considered here.

2.2. Factors that affect the measurement of blood pressure

BP was not measured for 121 individuals, sometimes because of time constraints, or sometimes
because the investigator did not want to place any additional burden on the respondent. In some
cases, it was reported that the subject was too ill to be measured. Table I indicates that BP was
measured less frequently for very old people and for those with health problems. Also, BP was
measured more often if it was suspected that the BP was too high, for example if the respondent
indicated a previous diagnosis of hypertension, or if the respondent used any medication that
lowered blood pressure. The non-response rate for BP also varies during the data collection
period of the study. The rate gradually increases during the first seven months of the sampling
period from 5 to 40 per cent of the cases, and then suddenly drops to a fairly constant level of
10—15 per cent. A complicating factor here is that the sequence in which the respondents were
interviewed was not random. High risk groups, that is, elderly in hospitals and nursing homes and
those over 95 years, were visited first.

Figure 1 displays survival curves for two groups in our study: one group with observed
BP measures (n

0"4
"835) and one with missing BP (n

.*4
"121). These curves have been obtained

as baseline hazards after fitting a proportional hazards model adjusted for age, sex and type
of residence, and stratified by the missingness indicator. People without BP measures apparently
have higher mortality rates. Figure 1 suggests that eliminating the incomplete data will
overestimate the true survival of the cohort. Moreover, if the process that causes the missing data
depends jointly on survival and the unknown BP, then the estimate of scientific interest to
us, namely the relative mortality risks of subcohorts of different BP levels, can be biased.
Problems in model A would occur if, in the conditional distribution given age and sex, the
relation between BP and mortality is different for those with BP measured than for those without.
It is, however, impossible to demonstrate this from the data, because BP data are missing in the
second group.

Table II shows the proportion of people for whom BP was not measured, cross-classified
by three-year survival and history of hypertension. Of all persons who died within three years and
who have no history of hypertension, more than 19 per cent have no BP measurement. The rate
for the other categories is about 9 per cent. This suggests that a relatively large group of
individuals wihtout hypertension and with high mortality risk is missing from the sample for
which BP is known. In that case, confounding by selection could occur in the sense that an
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Table I. Some variables that have different distributions in the response (n"835)
and non-response groups (n"121). Shown are percentages. Significance levels

correspond to the s2-test

Variable Observed BP Missing BP

Age (year) p(0)001
85—89 63 48
90—94 32 34
95# 6 18

Type of residence p(0)001
Independent 52 35
Home for elderly 35 54
Nursing home 13 12

Activities of daily living (ADL) p(0)001
Independent 73 54
Dependent on help 27 46

History of hypertension p"0)06
No 77 85
Yes 23 15

Uses diuretics p"0)03
No 55 67
Yes 45 33

analysis that uses only the complete cases underestimates the mortality of the lower and normal
BP groups. Note that this reasoning is somewhat tentative as it relies on the use of hypertension
history as a proxy for BP. If true, however, we would expect that more of the lower BP measures
are missing. Thus, selection might blur the effect of BP on mortality.

2.3. Response mechanisms for blood pressure

A first step to account for the missingness is to specify a number of plausible response mecha-
nisms. Let ½ be an n]p matrix of partially observed outcome variables in a sample of size n. In
the present case, p"4, where the columns ½

1
, . . . ,½

4
are:

½
1

systolic blood pressure (mmHg);
½

2
diastolic blood pressure (mmHg);

½
3

survival or censoring time (in days since the home visit);
½

4
censoring indicator (0, 1).

Let Z denote an n]q matrix of observed covariates. For the blood pressure problem we have
q"31, where the columns Z

1
, . . . ,Z

31
are:

Z
1

age;
Z

2
sex;

Z
3,. . . ,31

health measures.

Health was measured by 29 variables, including mental state, presence of handicaps, being
dependent in activities of daily living (ADL), history of cancer, and so on. Until Section 3.3 it is
assumed that Z is completely observed for everyone in the sample.
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Figure 1. Survival curves obtained by fitting a proportional hazards model adjusted for age, sex and type of residence and
stratified by the presence of a systolic blood pressure measurement (n

0"4
"835, n

.*4
"121)

Table II. Proportion of people for whom no BP was
measured, cross-classified by three-year survival and pre-
vious hypertension history. Shown are proportions per
cell (number of cases with missing BP/total cell count)

Survived'3 years History of previous hypertension
no yes

yes 8)7% (34/390) 8)1% (10/124)
no 19)2% (69/360) 9)8% (8/82)

The primary scientific interest centres on modelling the conditional densities p (½
3
,½

4
D½

1
,Z)

and p (½
3
,½

4
D½

2
, Z), where the problem is that risk factors ½

1
and ½

2
are incomplete. ½

3
and

½
4

are fully observed, apart from censoring. Let ½
0"4

and ½
.*4

denote the observed and missing
parts of ½, so ½"(½

0"4
,½

.*4
). Let R be an n]p binary matrix indicating the elements of ½ that

are observed (R
ij
"1 if ½

ij
is observed).

The response mechanism models the probability that ½ is observed as a function of observed
and unobserved data, and is written as a conditional density p (R"1 D½

0"4
,½

.*4
, Z). Different

assumptions concerning the relation between R on the one hand and ½
0"4

, ½
.*4

and Z on the other
define different types of response mechanisms. We now explain in what way response mechanisms
are relevant to the blood pressure problem. Three types of mechanisms will be distinguished:
missing completely at random (MCAR); missing at random (MAR), and not missing at random
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(NMAR).9 The response mechanisms apply to blood pressure, that is, to R
1
and R

2
, and not to R

3
and R

4
, which are complete.

(i) Mechanism MCAR. The simplest response mechanism to consider is p (R"1)"r, where
r is the proportion of responses estimated by r"n

0"4
/n"835/956"0)87. The model

stipulates that non-response of BP is randomly distributed. It will be clear that this model
is not realistic in the Leiden 85#Cohort study. Figure 1 shows that systematic differences
in mortality exist, which would not be expected if the missing data were really MCAR.

(ii) Mechanism: MAR on ½
0"4

. Figure 1 suggests that the probability of BP measurement
depends on survival, as in p(R D½

3
,½

4
). In particular, short-term survivors have more missing

BP data. This is not surprising since elderly in poorer condition (that is, people with reduced
survival probabilities) are less likely to be measured. Since the response probability depends on
survival, this factor must be taken into account when correcting for non-response.

(iii) Mechanism: MAR on Z. The probability of non-response could also be related to age, sex,
type of residence, drug use and health status (see Table I). This mechanism p(R DZ) is
plausible in the Leiden 85#Cohort study, so covariates Z will have to be considered when
making non-response corrections.

(iv) Mechanism NMAR. Table II suggests that people with low BP are missing more fre-
quently. Here, the probability of non-response is related to the BP, which (unfortunately) is
unobserved sometimes. The mechanism is typified by p(R D½

0"4
,½

.*4
). Properly accounting

for this mechanism requires external information about the distribution of ½
.*4

that is
typically beyond the data.

An adequate treatment of non-response will mix the four mechanisms. Both MAR models can
be usefully combined into one MAR mechanism p (R D½

0"4
, Z) that conditions upon all observed

data. This is the basic model that will be used as a starting point in the next section. In addition,
some alternatives regarding p(½

.*4
) will be investigated to display the sensitivity of the results

under various NMAR assumptions.

3. MULTIPLE IMPUTATION

Multiple imputation will be applied to account for the non-response. The main tasks to be
accomplished in multiple imputation are:

1. Specify the posterior predictive density p (½
.*4

DX,R), where X is a set of predictor variables,
given the non-response mechanism p(R D½,Z) and the complete data model p (½,Z).

2. Draw imputations from this density to produce m complete data sets.
3. Perform m complete-data analyses (Cox regression in our case) on each completed data matrix.
4. Pool the m analyses results into final point and variance estimates.

Simulation studies have shown that the required number of repeated imputations m can be as
low as three for data with 20 per cent of missing entries.10 In the following we use m"5, which is
a conservative choice.

3.1. Specification of the imputation model

The specification of the imputation model is the most complex step in multiple imputation. We
first deal with the situation in which the response mechanism is MAR. In this case, no explicit
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non-response model is needed,9 and only the posterior p (½
.*4

D X) needs to be specified. The
imputation model that forms the statistical basis for creating imputations involves two modelling
choices: the form of model (linear, polynomial, logistic, etc.), and the set of predictors X that enter
the model.

We use linear regression imputation with the ‘closest predictor’ option as in Rubin (reference
10, p. 168). This method models missing BP as a linear combination of predictor variables X, finds
the complete case whose BP estimate is closest to that of the current incomplete case, and takes
the observed BP from the former as the imputed BP value for the latter. A linear model may seem
a rather simplistic choice here. Note, however, that the only function of the imputation model is
to provide ranges of plausible values. Neither the form of the model nor the parameters estimates
are particularly interesting. Unless the uncertainty associated with the missing entries is small, the
exact form of the functional part of the model is largely immaterial.

A second choice concerns the selection of predictor variables. As a general rule, using all
available information yields multiple imputations that have minimal bias and maximal certainty.
This principle implies that the number of predictors should be as large as possible. It has been
observed that including as many predictors as possible tends to make the MAR assumption more
plausible, thus reducing the need to make special adjustments for NMAR mechanisms.12,15
However, the full data set of the Leiden 85#Cohort contains several hundred variables, all of
which can potentially be used to generate imputations. It is not feasible (because of multicol-
linearity and computational problems) to include all these variables. It is also not necessary. The
increase in explained variance in linear regression is typically negligible after the best, say, 15
variables have been included. For imputation purposes, it is expedient to select a suitable subset
of data that contains no more than 15 to 25 variables. The strategy we followed for selecting
predictor variables from a large data base consists of four steps:

1. Include all variables that appear in the complete-data model. Failure to do so may bias the
complete-data analysis, especially if the complete-data model contains strong predictive
relations. In particular, this means that ½

0"4
and Z are always part of the set of predictors.

2. In addition, include the variables that appear in the response model. Factors that are known
to have influenced the occurrence of missing data (stratification, reasons for non-response)
are to be included on substantive grounds. Other variables of interest are those for which the
distributions differ between the response and non-response groups. These can be found by
inspecting their correlations with the response indicator of the target variable (that is, the
variable to be imputed). If the magnitude of this correlation exceeds a certain level, then the
variable is included. The included set of variables is identified by º.

3. In addition, include variables that explain a considerable amount of variance of the target
variable. Such predictors help to reduce the uncertainty of the imputations. They are crudely
identified by their correlation with the target variable. The selected set of variables is
identified by ».

4. Remove from the sets º and » those variables that have too many missing values within the
subgroup of incomplete cases. A simple indicator is the percentage of observed cases within
this subgroup, the percentage of usable cases.

The complete set of predictor variables is now given by X"[½
0"4

,Z,º,»].
The selection procedure was applied to data from the Leiden 85#Cohort. Table III contains

a summary of the selected predictors. Columns 1 and 2 give the correlation of each variable with
systolic and diastolic BP, respectively. Column 3, labelled r(R

1
), provides the correlation with the
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Table III. Summary of variables that are used for imputation. Columns 2 and 3 contain the
correlations of the row variables with systolic and diastolic blood pressure. Column 4 lists
the correlation with the response indicator for systolic blood pressure. The percentage of
usable cases is equal to the percentage of the observed data of the row variable within the

subgroup of cases (n"121) that have missing systolic blood pressure data

Variable r (SBP) r(DBP) r(R
1
) % usable

cases

½: Incomplete and outcome variables
Systolic BP 1)00 0)59
Diastolic BP 0)59 1)00
Survival date 0)18 0)14 0)12 100
Censoring flag 0)13 0)11 0)08 100

Z: Covariates (model A)
Sex !0)10 !0)10 !0)04 100
Age !0)11 !0)11 !0)14 100

º: Variables related to the non-response
Type of residence !0)21 !0)15 !0)08 100
ADL !0)24 !0)11 !0)14 98
Previous hypertension 0)16 0)14 0)06 90
Uses diuretics !0)04 !0)03 0)06 85
Year of interview 0)18 0)09 0)18 100
Year of blood sample 0)17 0)11 0)16 89

»: Prediction variables
Serum albumin 0)24 0)18 0)02 67
Cognition (MMSE) 0)24 0)18 0)07 78
Current hypertension 0)23 0)17 0)01 83
Current/previous hypertension 0)22 0)19 0)04 83
Survival year 0)21 0)15 0)14 100
In (survival date) 0)20 0)15 0)09 100
Score GHQ !0)19 !0)18 !0)01 83
Serum cholesterol 0)17 0)17 0)12 65
Fraction erythrocytes 0)17 0)20 0)08 70
Treated by specialist !0)16 !0)11 0)02 100
Haemoglobin 0)15 0)18 0)08 70
Haematocrit 0)11 0)18 0)10 70

ADL: activities of daily living
MMSE: mini-mental-state examination

response indicator of systolic BP. This correlation has zero expectation under MCAR. Column
4 gives the percentage of observed values (out of 121) that can potentially be used to impute BP.
Step 1 of the procedure includes the variables that appear in complete data model A: blood
pressure; survival; sex and age. Step 2 adds a number of variables found to be related to the
non-response (see Table I): type of residence; ADL-dependency; previous hypertension; use of
diuretics; year of the interview and blood sample. Step 3 selects all variables whose absolute
correlation with BP (systolic or diastolic) exceeds 0)15. The logarithm of the survival time was
included as a potential predictor so that multiplicative relations between survival time and the
covariates could be modelled by additive models. Step 4 removes variables with percentages of
usable cases lower than 50 per cent. The total number of variables thus selected is equal to 24.
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3.2. Drawing imputations, univariate case

Let h"(b, log p) where b is a regression weight and p is its standard deviation. We take log(p)
instead of p since this enables the use of the conventional non-informative prior. The posterior
predictive density can be written as

p(½
.*4

DX,R)"P p(½
.*4

D X,R, h)p (h D X,R) dh.

The standard procedure for creating multiple imputations consists of two steps: first, draw a value
of h* from p (h D X,R); second, draw a value ½*

.*4
from its conditional posterior distribution given

h*, that is, from p (½
.*4

D X,R, h"h*). Repeating these steps m times yields m draws from the
posterior distribution of ½

.*4
, which are to be used as the actual multiple imputations.

We first deal with the situation where ½
.*4

is univariate and where X is complete. Let ½
0"4

be the
complete part of the variable to be imputed, and ½

.*4
denote the incomplete component. Let X

0"4
denote the predictors for n

0"4
individuals with observed BP, and let X

.*4
denote the complement

of n
.*4

cases with missing BP. Let r be the number of predictors to be used for ½, which is
24!1"23 our case. Given that ½ is modelled by a linear regression model, and assuming the
conventional uniform prior for hJc, the algorithm for creating m multiple imputations ½

.*4
is as

follows:10

1. Calculate ¼"(X@
0"4

X
0"4

)~1, bK "¼X@
0"4

½
0"4

, and ½K
0"4

"X
0"4

bK .
2. Draw a random variable g from the s2-distribution with d.f."n

0"4
!r.

3. Calculate p2
*
"(½

0"4
!½K

0"4
)@ (½

0"4
!½K

0"4
)/g.

4. Draw an r-dimensional Normal random vector D&N(0, I
r
), where I

r
is the identity matrix

of order r.
5. Calculate bK

*
"bK #p

*
¼1@2D, where ¼1@2 is the triangular square root of ¼ obtained by

the Cholesky decomposition.
6. Calculate predicted values ½K

.*4
"X

.*4
bK
*
.

7. For each missing value i"1, . . . , n
.*4

find the respondent whose ½K
0"4

is closest to ½K
.*4,i

and
take ½

0"4
of this respondent as the imputed value of i.

8. Repeat steps 2—7 m times to create ½(1)
.*4

, ½(2)
.*4

, . . . ,½(m)
.*4

.

Step 1 obtains bK and ½K
0"4

from the observed data by linear regression. Steps 2—5 provide
a random draw from the posterior distribution of b. The idea in steps 6 and 7 is to borrow
imputions from similar, but complete cases. The index of similarity between cases is the distance
between their predictive means for BP (that is, their ½K -values) when predicted from the observed
data. This technique is robust to substantial departures from the linear model and yields
imputations that are always in the metric of the observed data. Note that the algorithm not only
incorporates uncertainty due to deviations around the regression line (steps 2 and 3), but also
reflects the variation of the regression line itself due to finite sampling (step 4).

3.3. Drawing imputations, multivariate case

Missing data are usually multivariate. It is convenient to split the multivariate problem into
a series of univariate problems, and solve the multivariate case by iteration. For example, suppose
that the data are multivariate Normal, then it is possible to generate imputations from this
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distribution by applying an iterative algorithm that draws samples from a sequence of univariate
linear regression.12 We follow a slightly different approach, where we specify a set of conditional
distributions, one for each incomplete variable. We do not explicitly assume a particular form for
the multivariate distribution as in Schafer, but do assume that a multivariate distribution exists,
and that draws from it can be generated by Gibbs sampling the conditional distributions.16,17
Kennickell applied a similar idea to special patterns of missing data.18 The present paper uses this
method for general missing data patterns.

First, each incomplete entry is initialized by filling in a random draw from the marginal
distribution of ½

0"4
. Then, ½

1
is imputed by the elementary procedure conditional on all other

data (observed and imputed combined), then ½
2

conditional on all other data (using the most
recent imputations for ½

1
), and so on, until all incomplete variables in ½, Z, º and » have been

imputed. Subsequently, start a second pass through the data, using all imputations created during
the first pass, and so on. The set of imputations that are created after the 20th pass are used to
derive the first complete data matrix. This whole procedure is executed m times in parallel, thus
producing m completed data sets. We call this method regression switching.

Note that additional variability enters into step 1 of the elementary procedure. This reflects
the fact that information is missing from the predictors. The method is a Gibbs sampler. Under
quite general conditions the draws converge to the appropriate multivariate posterior density
p(½

.*4
D½

0"4
,X, R). It is, however, not always certain that the posterior actually exists. It is possible

that the specification of two conditional distributions p(½
1
D½

2
) and p (½

2
D½

1
) are incompatible, so

that no joint distribution p(½
1
,½

2
) exists. Since there is no distribution to converge to, the

algorithm will then alternate between isolated conditional distributions. In the linear case, this is
probably more the exception than the rule. The subject of incompatible conditionals is, however,
still an open research problem. Brand19 studied the performance of a variety of regression
switching algorithms based on possibly incompatible conditionals. It appears that these methods
work very well when evaluated by classic frequentistic criteria.

The number of iterations (20) is much lower than is common in modern Markov chain
simulation techniques, that often require thousands of iterations. In regression switching, the
posterior distributions of the regression coefficients absorb the uncertainty in the predictors. The
main question now is whether 20 steps are enough to stabilize these posteriors. Regression
switching is reminiscent of HOMALS-like algorithms,20 which usually convergence fast during
the first few iterations. We therefore expect that not much will happen to the coefficients after, say,
10 iterations. Also, note that the elementary procedure creates imputations that are already
statistically independent. No iterations need to be wasted for achieving independence between
successive draws, as is typical for MCMC methods. To check convergence, we increased the
number of iterations to 50, but did not find appreciable differences. Brand’s simulation study
successfully used just five iterations.19

3.4. d-adjustment

Thus far we have assumed that the non-response mechanism is MAR. Section 2 discusses the
possibility that the mechanism is NMAR, even after conditioning on Z. This section explains
a simple adaptation of the switching method that can be used to adjust the imputations. The
adjustment is independent of X and represents a relatively crude way of incorporating the idea
that the non-responders are expected to have lower blood pressures. Though more advanced
techniques based on selection21 or pattern-mixture models22 could also be applied here, it is
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useful to see the effects of the crude d-adjustment before addressing the added complexities that
such models would bring. The primary function of the d-adjustment is to investigate the
robustness of the MAR assumption against violations. Studying the effect of varying d on the
complete data analysis helps to determine whether the relation between BP and mortality is
affected by the non-response, and if so, at what point.

Suppose that the distribution of BP for the entire sample is known, but that actual data are
only available for a subset of individuals. Table IV presents a numerical example of a specification
of the response mechanism, where the probability of missingness p (R"0 D BP) varies between
0 and 35 per cent and depends on BP. One can apply Bayes rule to calculate the BP distribution
of the responders p(BR D R"1) and of the non-responders p (BP DR"0). Both distributions are
approximately Normal, but differ in location by d"151)6!138)6"13 mmHg. This suggests
that, in the absence of predictors, one can generate an imputation by subtracting an amount
d from a random draw from p (BP DR"1).

Incorporating this idea into the regression switching method involves the addition of a location
term to the imputation model as ½

1
"Xb#(1!R

1
)d#e . Here R

1
is the binary response

indicator of systolic BP, and d is a constant that is specified in advance by the imputer. This model
postulates a mean difference in excess of that induced by X of d units between responders and
non-responders.

The non-response adjustment is applied to systolic BP only. Because SBP and DBP are
correlated, both are imputed simultaneously in the same run. During the first iteration, imputa-
tions for SBP are decreased by d points. These imputations are subsequently used for imputing
third variables, amongst others DBP, which in turn are used to re-impute SBP during the second
pass. Thus, the effect of the d-adjustment on SBP automatically carries over to DBP, and it is
even somewhat amplified by iteration. Since it is expected that the blood pressure of the non-
responders is lower, d is chosen as 0,!5,!10,!15 and!20 mmHg. The model reduces to the
MAR case if d"0.

3.5. Pooling

The computation of the final estimate for complete-data model parameters Q given the m com-
pleted data sets follows the standard rules (Rubin,10 p. 76). Suppose that QK

i
is a k-dimensional

column vector containing the estimates of interest obtained by analysing the ith imputed data set
(i"1, . . . ,m). Let º

i
denote the corresponding k]k matrix of covariances among the estimates.

The combined point estimate is then equal to QK "+m
i

QK
i
/m. The combined covariance matrix is

¹"º#(1#m~1)B, where º"+m
i
º

i
/m, and where B"+m

i
(QK

i
!QK )@ (QK

i
!QK )/(m!1).

For large samples, the 95 per cent confidence interval for Q is estimated as QK $1)96J¹. Relative
risk estimates and their confidence limits in the proportional hazards model can be obtained
as exp(QK ) and exp(QK $1)96J¹).

4. RESULTS

Table V contains the mean blood pressure under various models. As expected, the mean blood
pressure under MAR (with d"0) is lower than the mean of the observed data, though the difference is
small: 1)8 mmHg (SBP) and 1)3 mmHg (DBP). Decreases beyond this are due to the d-adjustment.

Table VI contains relative mortality risks for different blood pressure strata. These are
estimated by a classic proportional hazards model, corrected for age and sex. This corresponds
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Table IV. Numerical example of an NMAR non-response
mechanism, when there are more missing data for lower blood

pressures

Class
midpoint of
Systolic BP
(mmHg) p (R"0 DBP) p (BP) p(BP DR"1) p (BP DR"0)

100 0)35 0)02 0)01 0)06
110 0)30 0)03 0)02 0)07
120 0)25 0)05 0)04 0)10
130 0)20 0)10 0)09 0)16
140 0)15 0)15 0)15 0)19
150 0)10 0)30 0)31 0)25
160 0)08 0)15 0)16 0)10
170 0)06 0)10 0)11 0)05
180 0)04 0)05 0)05 0)02
190 0)02 0)03 0)03 0)00
200 0)00 0)02 0)02 0)00

Mean
(mmHg) 150 151)6 138)6

Table V. Mean and standard deviation of the observed and imputed
blood pressures. The statistics of imputed BP are pooled over m"5

multiple imputations

N d SBP DBP
Mean SD Mean SD

Observed BP 835 152)9 25)7 82)8 13)1
Imputed BP 121 0 151)1 26)2 81)5 14)0

121 !5 142)3 24)6 78)4 13)7
121 !10 135)9 24)7 78)2 12)8
121 !15 128)6 25)0 75)3 12)9
121 !20 122)3 25)2 74)0 12)1

to model A of the introduction. It was expected that multiple imputation would raise the risk
estimates in comparison with the analysis based on the complete cases, but the results do not
confirm this. Only slight differences in mortality exist, even among non-response models with
very different d’s. It appears that, for this application, risk estimates are insensitive to the missing
data and the various non-response models used to deal with them.

5. CONCLUSION

A critical point in our application is the poor prediction of blood pressure (multiple r2 (SBP)"
0)24 and r2 (DBP)"0.17). The generated imputations thus are quite uncertain and contain
considerable residual noise. The increase of precision of risk estimates under the ignorable model
is therefore, at best, remote. This situation is not atypical, as low r2 is common in epidemiological
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Table VI. Relative mortality risks (with 95 per cent confidence interval) estimates by the classic propor-
tional hazards model corrected for age and sex. Estimates are relative to the reference group (SBP: 145—160,
DBP: 75—80). The top row in each table contains the estimates from the complete case (CC) analysis. The
bottom five rows are based on multiple imputation, where d refers to the parameter in the d-adjustment

d Systolic blood pressure (mmHg) n
(125 125—140 165—180 185—200 '200

CC 1)76 [1)36—2)28] 1)48 [1)19—1)84] 1)11 [0)87—1)42] 1)14 [0)85—1)54] 0)89 [0)51—1)57] 835
0 1)71 [1)34—2)20] 1)47 [1)20—1)80] 1)12 [0)89—1)42] 1)15 [0)87—1)53] 0)97 [0)56—1)71] 956

!5 1)69 [1)25—2)29] 1)40 [1)14—1)73] 1)07 [0)82—1)39] 1)09 [0)82—1)46] 0)98 [0)57—1)67] 956
!10 1)73 [1)33—2)25] 1)47 [1)17—1)85] 1)09 [0)83—1)43] 1)11 [0)82—1)51] 0)95 [0)54—1)67] 956
!15 1)67 [1)30—2)14] 1)46 [1)18—1)80] 1)07 [0)82—1)39] 1)09 [0)80—1)47] 0)91 [0)51—1)60] 956
!20 1)69 [1)35—2)11] 1)42 [1)14—1)76] 1)10 [0)86—1)40] 1)10 [0)82—1)48] 0)91 [0)51—1)62] 956

d Diastolic blood pressure (mmHg)
(65 65—70 85—90 95—100 '100 n

CC 1)82 [1)33—2)48] 1)21 [0)95—1)55] 0)96 [0)78—1)19] 0)87 [0)67—1)13] 0)81 [0)55—1)20] 830
0 1)78 [1)34—2)37] 1)19 [0)95—1)50] 0)97 [0)78—1)19] 0)90 [0)70—1)14] 0)83 [0)58—1)19] 956

!5 1)63 [1)21—2)19] 1)09 [0)87—1)38] 0)87 [0)71—1)06] 0)80 [0)62—1)01] 0)81 [0)55—1)19] 956
!10 1)83 [1)32—2)53] 1)22 [0)96—1)55] 0)97 [0)78—1)20] 0)88 [0)68—1)14] 0)81 [0)55—1)20] 956
!15 1)69 [1)25—2)28] 1)20 [0)94—1)53] 0)94 [0)76—1)15] 0)83 [0)64—1)08] 0)76 [0)51—1)13] 956
!20 1)62 [1)23—2)13] 1)20 [0)92—1)56] 0)92 [0)75—1)14] 0)85 [0)66—1)09] 0)78 [0)53—1)15] 956

studies. Even if the imputed blood pressures are lowered by enlarging d, the risk estimates hardly
change. One factor contributing to the apparent stability is the moderate amount of missing date
(12)5 per cent). Another factor might be that differences in mortality between responders and
non-responders are simply too small to exert a serious impact on the estimates. It is, however,
difficult to know this beforehand.

The method used to generate the imputations contains some compromises that could mask the
relevant effects. Note that predictor selection is optimized for SBP, and that the same univariate
technique is used for each incomplete predictor. Sharper imputations require separate modelling
of each incomplete predictor. Though possible, this introduces additional complications in the
algorithm. We are currently working on a more extensive methodology that allows the user to
specify a separate imputation model for each incomplete variable. This work builds on the
strategy put forth in this paper. We expect that this leads to a flexible and generally useful
methodology for creating sharp imputations in multivariate missing data.

It is known that complete-case methods yield valid inferences when missingness depends on the
regressors.23,24 The blood pressure problem is more complicated, however, because missingness
depends on survival, the outcome measure. The options for a proper analysis of the data are
limited in this case, and complete-case analysis does not provide appropriate estimates in general.
The fact that the results of multiple imputation and complete-case analysis are similar does not
imply that complete-case analysis had been appropriate in the first place. However, given that we
now know that the missing data hardly influence the risk estimates, more elaborate analyses (for
example, model B) of the same material will probably continue to yield valid inferences if only the
complete cases are taken into account.
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