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This paper describes a method for finding optimal transformations for
analyzing time series by autoregressive models. `Optimal' implies that the
agreement between the autoregressive model and the transformed data is
maximal. Such transformations help 1) to increase the model fit, and 2) to
analyze categorical time series. The method uses an alternating least
squares algorithm that consists of two main steps: estimation and trans-
formation. Nominal, ordinal and numerical data can be analyzed. Some
alternative applications of the general idea are highlighted: intervention
analysis, smoothing categorical time series, predictable components,
spatial modeling and cross-sectional multivariate analysis. Limitations,
modeling issues and possible extensions are briefly indicated.
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1 Introduction

An important objective in the analysis of time series is to predict future from past

data. To this end, a time series model is often ®tted to the data. If this model holds

well and if it is expected to hold in the future as well, then the model can be used to

predict future observations. The ARIMA model developed by BOX and JENKINS

(1976) is a very popular linear model in this context. This paper describes a method to

extend the autoregressive model with an optimal transformation of the data.

`Optimal' means that, within the allowable class, a transformation will be sought such

that the agreement between the model and the data is maximal. This serves two

purposes: 1) to increase the ®t so that predictions can improve, and 2) to analyze and

predict categorical time series. Purpose 1 is achieved by applying appropriate

linearizing transformations to the data. Purpose 2 is achieved by assigning an optimal

value to each category followed by estimating the parameters of interest from the

quanti®ed data. Both goals work together and are attained by the same method.
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As an example of the type of problems for which the method may be useful,

consider the empirical time series plotted in Figure 1a. These data are taken from

HAND et al. (1993, dataset 141) and give the number of times that a DEC-20 computer

of the Open University broke down in each of 128 consecutive weeks of operation,

starting in late 1983. The pattern of autocorrelations suggest an autoregressive model

of order 1, that is, ut � utÿ1�1 � et , where ut denotes the mean deviation of the series

of interest, and where et is an i.i.d. normal random variable �t � 1; . . . ;T �. The least
squares estimate is �̂1 � 0:324. The series of predicted values, ût � utÿ1�̂1 is also

plotted. Large di�erences point to locations for which the model ®ts badly. The

expected mean squared prediction error for standardized data is equal to
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Fig. 1. Weekly number of computer failures (T � 128). Figure (a) plots the raw data (solid line) together

with the ®tted values according to the AR(1) model (dashed line). Figure (b) is the same plot for

the optimally transformed data (Source: HAND et al., 1993, p. 109).



E ��uÿ û�2� � 0:911. Notation E ��� indicates the expectation operator. Figure 1b

plots the same series, but now after an optimal monotone transformation xt � f �ut�
has been applied. This transformation uses only the ranking order in the data. The

estimate of � is now �̂1 � 0:394. The comparable mean squared error is equal to

E ��xÿ x̂�2� � 0:851, which improves upon the model for the raw data. The plot

demonstrates that the transformation e�ectively compresses a few large residual

terms, thereby making the analysis more robust against outliers. In addition, the

transformation reduces the mean prediction error and improves the ®t to the data.

The use of nonlinear data transformations in time series analysis has a long

tradition. Log, square root and reciprocal transformations are routinely used. The

Box±Cox transformation is another popular candidate. The shape parameter is

sometimes optimized to increase the model ®t, usually by grid search or by numerical

optimization as in ANSLEY, SPIVEY and WROBLESKI (1977). Di�erencing the data is

another well known transformation. It forms an integral component of the ARIMA

model. Methods for integrating nonlinear transformations and linear time series

models by ACE can be found in OWEN (1983) and YOUNG (1990). The present work

extends previous research by considering a di�erent class of transformations. This

class is less restrictive in the sense that the transformation function need not be

smooth or monotone.

Methods for analyzing categorical time series come in several ¯avors. BISHOP,

FIENBERG and HOLLAND (1975, Ch. 7) and others have shown howMarkov chains can

be formulated as log-linear and logit models for transition matrices. These methods

are often applied to panel data in which many individuals are observed during a small

number of time points. By assuming stationarity it is also possible to estimate the

transition matrix from a single categorical time series, which can be used for further

analysis. In this way, one could not only study the transition from tÿ 1 to t, but also

second order transitions from tÿ 2 and tÿ 1 to t, and so on. JACOBS and LEWIS (1978)

proposed a quite di�erent method, the DARMA model. Their model generalizes the

ARMA model to sequences of discrete random variables by forming linear

combinations of discrete random variables. SINGH and LEMAITRE (1987) adapted

the method to panel data, but the DARMA model has not gained wide acceptance.

STOFFER (1991) proposes Walsh-Fourier analysis for time series. This method

decomposes the data into block waves, and can also handle categorical series.

HARVEY and FERNANDES (1989) put forward structural models for categorical series.

FAHRMEIR (1992) describes a method for ®tting categorical series to a discrete state

space model by extended Kalman ®ltering. RAVEH and TAPIERO (1980) present

interesting techniques for studying recurring patterns in categorical series. GREGSON

(1987) simply applies linear models to categorical daily self-report data. DEVILLE and

SAPORTA (1983) adapted correspondence analysis to nominal time series.

The present work adapts the classic linear autoregressive model to categorical data

by means of optimal scaling. Optimal scaling as practiced here is equivalent to linear

analysis with an added set of scaling parameters. Given the transformation, ®nding

parameter estimates is a linear problem which can be solved by least squares.
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However, since the transformation is unknown, iteration is typically needed to

estimate both sets of parameters. Extensive experience with such methods for

multivariate analysis has accumulated in GIFI (1990).

The method assumes that the data are classi®ed into discrete and non-overlapping

categories. Time series can be measured on nominal, ordinal or interval scales, or any

mix of these. It is assumed that it makes sense to scale the categories on a line. If so,

optimal scaling generally enhances the interpretation of the relations among the

categories. If not, e.g. for truly nominal series like religion, scale values may have

little meaning, but these cases are rather exceptional. Another assumption of the

method is constancy of quanti®cation, i.e. scaling does not change with time. This is a

desirable property if the meaning of the category system is the same for all time

points, which is typically the case. Observations are assumed to be equidistant in

time. The number of needed time points grows, amongst others, with the number of

free parameters. Unless the user is willing to accept very imprecise estimates, at least

50 observations should be available for ®tting a simple autoregressive model. Of

course, more complex models need more.

The structure of the text is as follows. Section 2 introduces the mathematical

translation of the problem into the minimization of a loss function. Section 3 presents

two examples of the approach. Section 4 sketches a number of other applications that

are based on the same ideas. Finally, section 5 closes the paper and discusses some

pitfalls and extensions.

2 Method

2.1 Problem formulation

The autoregressive model of order one as discussed in the introduction is a special

case of the general stationary model of order P,

ut � utÿ1�1 � utÿ2�2 � � � � � ut2�P � et �1�

where E ���putÿp�p� 0et � 0 and where et is a serially uncorrelated normal random

variable with zero mean. Autoregressive models express the current score ut as a

linear combination of previous observations utÿ1; utÿ2; . . . ; utÿP plus an error

component. This error term incorporates everything new in the series at time t that

is not explained by the past data. If only one particular lag serves as a predictor, say

utÿ4 for quarterly series, a seasonal model is formed that can be used to portray

periodic phenomena.

Suppose that the data ut are transformed by a function f � � as xt � f �ut� then the
autoregressive model of the transformed data turns into

f �ut� � f �utÿ1��1 � f �utÿ2��2 � � � � � f �utÿP��P � "t

�
XP
p�1

f �utÿp��p � "t �2�
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where "t consists of white noise. The class of transformations that will be considered

in this paper can be written as xt � gty. Here gt is a time varying binary row vector of

length K that indicates in which of K categories each ut falls, and y � � y1; . . . ; yK �0 is a
column vector containing unknown scaling weights, or category quanti®cations. If

the measurement level of ut is ordinal then it makes sense to restrict the sequence of

y-values to be monotonically increasing so that the transformation preserves the

ordering of the categories. Likewise, for interval variables requiring that the y-values

increase in ®xed increments maintains equal distances between the categories.

Substituting for xt in (2) results in the generalized autoregressive model

gt y � gtÿ1y�1 � gtÿ2y�2 � � � � � gtÿPy�P � "t

�
XP
p�1

gtÿpy�p � "t
�3�

in which �1; . . . ; �P and y1; . . . ; yK are two sets of unknown parameters. Estimating

these parameters from the data by least squares can be done by minimizing the loss

function

���y1; . . . ; yK ; �1; . . . ; �P� �
XT

t�1�P
gtyÿ

XP
p�1

gtÿpy�p

 !2

�4�

The ®rst P observations are deleted from the function because gt for t < 1 is generally

not known. GIFI (1990, p. 241) remarks that minimizing ��� � maximizes the multiple
correlation between gty and �pgtÿpy�p . Although it is possible to minimize ��� �
directly, it is convenient to reformulate (4) as

��y1; . . . ; yK ; a0; . . . ; aP; zt� �
XT

t�1�P
�zt ÿ gtya0�2 � zt ÿ

XP
p�1

gtÿpyap

 !2
0@ 1A �5�

where zt is an auxiliary observation from a latent variable, with E �zt� � 0 and

E �z0tzt� � 1, and where a0; . . . ; aP are unknown weights. It is known that �� � and ��� �
lead to the same solution for y (GIFI, 1990, p. 220). The main reason for using �� �
instead of ��� � is to facilitate generalizations to the multivariate case. In practice, one
®nds the y-estimates by minimizing (5), followed by least squares regression of gty on

�gtÿ1y ; . . . ; gtÿPy � to estimate �1 ; . . . ; �P . To identify the solution the transformation

xt � gty is normalized such that E�xt� � 0 and E�x0txt� � 1. The next section addresses

the problem of minimizing (5).

2.2 Parameter estimation

Let G � �g 01; . . . ; g 0T �0 denote the T � K indicator matrix of the data. Let x � Gy

represent the quanti®ed time series. The matrix B is de®ned as the T � T matrix with

ones on the subdiagonal, zeroes elsewhere (the backshift operator). The product Bx is

called a lagged variable of order one. The product Bp � BB . . .B is the pth order
#VVS, 1997
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backshift matrix. De®ne ssq�z� � tr�z0z�. Loss function (5) can now be written in

matrix notation as

��y; a0; . . . ; aP; z� � ssq�zÿ Gya0� � ssq zÿ
X
p

B pGyap

 !

� ssq�zÿ xa0� � ssq zÿ
X
p

B pxap

 ! �6�

where the ®rst P rows are deleted from each matrix. This function is minimized by an

alternating least squares algorithm that consists of three main steps. Each of these

steps decreases �� �, or at least does not increase it, over a speci®c set of parameters.
Iterating the steps while conditioning on the most recent estimates produces, under

mild regularity conditions, a convergent algorithm. See GIFI (1990, p. 58) for a

discussion of the general idea. The paper by DE LEEUW, YOUNG and TAKANE (1976)

contains additional theoretical properties of alternating least squares procedures. The

steps are

a) minimization over z for ®xed y and a0 ; . . . ; aP by least squares;

b) minimization over a0 ; . . . ; aP for ®xed z and y by least squares;

c) minimization over y for ®xed z and a0 ; . . . ; aP by majorization.

The minimum of �� � over z is found by setting z � xa0 � �pB
pxap , followed by

scaling it to zero mean and unit variance. The minimum over a0 is obtained by

projection, that is, by setting a0 � x 0z=x 0x. Likewise, the minimum over �a1; . . . ; aP� is
obtained as �Bx; . . . ;BPx��z, where the superscript `+' indicates the Moore-Penrose

inverse of a matrix. The procedure for ®nding y is more complicated because it is

di�cult to derive a closed form expression for y conditional on the other parameters.

A solution is to replace the minimization of (6) by the iterative minimization of a

sequence of simpler loss functions whose values are always in excess of those of the

complicated function. This idea is called majorization, and it was applied ®rst within

the context of multidimensional scaling (DE LEEUW, 1977; DE LEEUW and HEISER,

1980). The appendix outlines how majorization is applied to the present problem.

Since steps a, b, and c all decrease, or at least do not increase the loss, iterating

them also decreases the loss until it cannot be lowered any further. The algorithm

stops if the loss di�erence between two subsequent main iterations becomes less than

0.0005. About 15 to 50 iterations are typically needed for ®tting a univariate auto-

regressive model. The algorithm is quite stable in the sense that tight stopping criteria

like 0.0000001 do not a�ect convergence.

Not much is known about the occurrence of local minima. Using di�erent starting

con®gurations, the algorithm may produce dissimilar solutions. Sometimes it helps to

use tight convergence criteria that prevent the algorithm from stopping at an almost

¯at region of the loss function. In other cases, the solutions may still be qualitatively

di�erent, for example if two solutions tie together two di�erent combinations of
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categories. These cases seem harder to preclude. Amoderately successful strategy is to

start from a reasonable initial solution in the hope that it will be close to the ®nal

solution. Experience suggests that executing a preliminary homogeneity analysis tends

to compress the solution towards the optimum. As a last resort, one may compute

many solutions, each using di�erent starting con®gurations, and pick out the solution

with the best ®t. Of course, this is computationally intensive. Moreover, even this does

not guarantee that the global optimum will be found within reasonable time.

3 Examples

3.1 Box±Jenkins Series D

The BOX and JENKINS (1976) series D consists of 310 observations of hourly viscosity

readings of an uncontrolled chemical process. The series is plotted in Figure 2a.

GRUBB (1992) noted that it may seem perverse to force this series into a categorical

scale, but since the observations happen to fall into a small number (26) of discrete
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Fig. 2. Box±Jenkins Series D: Hourly viscosity readings from an uncontrolled chemical process

(T � 310). Figure (a) plots the original data. Figure (b) plots the series after optimal trans-

formation by the AR(1) model. The diagram on the left estimates the density along the scale

(Source: BOX and JENKINS, 1976, p. 529).



values no information is lost. Box and Jenkins identi®ed two candidate models for

this series: a nonstationary di�erencing model with an MA-component, and a

stationary AR(1) model. To replicate the latter analysis, equation (6) was ®tted to

series D under a linear transformation function. The minimum loss was �lin � 0:1385,

with a0 � a1 � 0:96 and �̂1 � 0:87, which is the same as in Box and Jenkins. An

important model evaluation criterion in time series analysis is whether the residuals

from the model e�ectively conform to a white noise process. This was stressed by

GHADDAR and TONG (1981). The value of Box±Pierce's Q, a statistic that measures

residual autocorrelation, is equal to Q � 10:2 with 24 degrees of freedom. This value

is not signi®cantly larger, so it is concluded that the residuals could have been

generated by a white noise process.

Next the series was analyzed under a monotone transformation of the data

which preserves the ordering of the categories. The results for this ordinal analysis

are �ord � 0:0975 with a0 � a1 � 0:98 and �̂1 � 0:91. The autocorrelation of the

transformed series is equal to rord � 0:91. The residuals do not correlate (the Box±

Pierce statistic is 19.5 with df = 24). Figure 2b plots the transformed series. In

general, the series is ¯atter. The method compresses most values into the extremes

of the scale. This can best be seen from the transformation plot. This plot is given

in Figure 3 and graphs the observed values against their optimally scaled counter-

parts.

Figure 3 clearly demonstrates the increasing score pattern that preserves the

ordering. In standard numerical time series analysis the scores would all have been

located on a straight line. As noted, the monotone transformation tends to cluster the

extremes of the scale. This e�ect is especially visible on the lower side: scores 7.2 to 8.2

obtain identical quanti®cations. This implies that, given an AR(1) model, the

extremes of the scale do not discriminate very much among the measurements, i.e. it

matters little whether a score of 7.2 or a score of 8.2 is observed. One possible

interpretation of the phenomenon is that the physical process moves back and

forward between two points of attraction, located at about 8.2 and 9.6. It is not

known whether there is a physical basis for such an interpretation. What happens is

that maximizing predictability minimizes the variation within each level, thereby

making the points of attraction more visible. An alternative explanation is that

optimal scaling blows up the agreement at the ends of the scale just to increase the

autocorrelation, almost regardless of the data. This cannot be done without limits

however. For example, coding the data into two categories never produces a ®rst-

order autocorrelation that exceeds 0.83. This is even lower than the raw value. It is

not easy to beat the predictability of the transformed series by other methods. For

example, regression analysis on the original data including 4 or 5 polynomial degrees

comes close to producing a multiple correlation of 0.91, but does not exceed it.

It is not easy to say whether the ordinal analysis is `better' than the linear one. The

di�erence in terms of explained variance are not very large. For one thing, if the

relationship between xt and xtÿ1 is truly linear (and most time series models describe
only linear relationships), the transformation plot shows a straight line. This is clearly
#VVS, 1997
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not the case here, but only a specialist in this ®eld may be able to determine whether

the grouping e�ect indicates a real world physical process or not.

3.2 Rainfall data

Di�erent optimization criteria can lead to di�erent data transformations. This

subsection shows that the precise form of the transformation depends on the goal of

the analysis. The method was applied to thirty successive values of March

precipitation for Minneapolis/St. Paul listed in HAND et al. (1993, dataset 412).

HINKLEY (1977) attempted to ®nd a transformation that symmetrizes the distribution

by minimizing the deviation between the mean and the median.

Figure 4 compares the optimal transformation functions for Hinkley's criterion,

for the AR(1) model with ordinal data and for the AR(1) model with nominal data.

In the latter two analyses, the data were coded into four categories. Hinkley's

transformation is plotted in Figure 4a. It is equal to �u0:25t ÿ 1�=0:25 and its form

resembles that of the natural logarithm. Figure 4b gives the optimal monotone
#VVS, 1997
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Fig. 3. Transformation function for Box±Jenkins Series D. The horizontal axis corresponds to the series

in Figure 2a. The vertical axis corresponds to the transformed series of Figure 2b.
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transformation. This function is quite di�erent from Hinkley's transform, and

expands high values instead of compressing them. Figure 4c graphs the optimal

transformation for a nominal measurement level. This is again quite di�erent from

the others. It almost equalizes the extremes. All three optimal transformations are

strikingly di�erent.

To gain some insight into the factors that govern these di�erences consider the

summary statistics in Table 1.

Table 1. Summary statistics of the raw rainfall data plus three transformations (Hinkley's optimal

power transform, AR(1) optimal ordinal, AR(1) optimal nominal). The symmetry criterion is equal to

(MeanÿMedian)/SD. 'Autocor' means the ®rst-order autocorrelation.

Raw Power Ordinal Nominal

Mean 1.675 0.404 0 0

Median 1.470 0.404 0.100 ÿ0:067
SD 0.984 0.669 0.183 0.183

Criterion 0.208 0.000 ÿ0:549 0.372

Autocor 0.197 0.213 0.303 ÿ0:397

The power transformation brings the median close to the mean, as intended. Both

other transforms actually induce asymmetry and are thus sub-optimal with respect to

Hinkley's criterion. On the other hand, the power transformation hardly improves

upon the predictability of the series if modelled by an AR(1) model. The ®rst-order

autocorrelation rises from 0.197 to just 0.213. The ordinal transform increases it to

0.303, while the nominal transform doubles the magnitude of the autocorrelation to

(minus!) ÿ0:397.
Note that nominal transformation distinguishes the extremes from the middle

values. Apparently, it is easier to predict rapid alterations of mean deviations, than it

is to model the series by ¯attening the original. Whether the transformation can be

defended on scienti®c grounds is of course another matter. In some applications, it

might be more important to minimize prediction errors than it is to understand the

phenomenon. In such cases, a transform like that in Figure 4c might just be all that is

needed.

4 Other applications

Optimal scaling is not limited to autoregressive models. This section describes a

number of other applications of the same idea.

4.1 Intervention analysis

The goal of intervention analysis is to infer whether a speci®c event has an e�ect on

the level of the series. A standard reference is GLASS, WILLSON and GOTTMAN (1975).

Suppose that x1 denotes a series of outcome values and that x2 is a binary series that

codes the presence and absence of an event, for example indicating whether a speci®c

treatment was given at time point t. It would be convenient to use the t-test,
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conditional on the level of x2 . Such a procedure is questionable however if x1 is

autocorrelated. The t-test is therefore only used after the serial correlation has been

removed by a time series model. For autoregressive models the function

��z; x1; x2; a0 ; . . . ; aP; �� � ssq�zÿ x1a0� � ssq zÿ x2� ÿ
XP
p�1

Bpx1ap

 !

can be minimized over the relevant parameters. After optimal transforms are

obtained and after checking the residuals for white noise, regression weights are

found by projecting x1 onto the space spanned by �x2 ;Bx1; . . . ;BPxP�. Coe�cient �
indicates the corrected change in mean level and can then be tested for signi®cance.

VAN BUUREN (1990, p. 98±103; 1996) contain examples of this application.

4.2 Smoothing categorical time series

Suppose that x is smoothed by a running mean smoother

vt �
XP
p�ÿP

xtÿpap

where aÿP; . . . ; aP are known ®lter weights that determine the precise properties of the

smoother. Some well known choices correspond to the running average ®lter, the

Hanning ®lter, the Spencer 15-point ®lter and the Gaussian kernel. A nice overview

of such techniques can be found in GOODALL (1990). Minimizing

��z; x� �
XP
p�ÿP

ssq�zÿ Bpxap�

over z and x � Gy then de®nes v �PP
p�ÿP B

pxap as the ®ltered series. This technique

seems especially useful to quantify univariate series for which no additional

information is available, other than being smooth. No applications of this technique

have yet seen the light.

4.3 Predictable components

BOX and TIAO (1977) proposed a canonical analysis that extracts predictable

components from multivariate time series. The ®rst predictable component is a linear

combination of the original series that forecasts itself as well as possible. Like

principal components analysis, the second component optimizes the same criterion,

but under the condition that it is orthogonal to the ®rst. The technique can be used as

a dimension reduction device to bring out the major time dependent characteristics of

a multivariate data set.

Let X of order T �M contain M quanti®ed series sampled at T points of time.

Suppose that xt can be modelled by the multivariate autoregressive process

xt � F1xtÿ1 � � � � � FPxtÿP � et , where F1; . . . ;FP are M �M matrices, and where

et is an M-component white noise process. BOX and TIAO (1977) show that this



multivariate autoregressive process can be reparametrized as a collection of M

uncoupled univariate autoregressive processes on some new series v1t; . . . ; vMt . The

transforms works by ®nding linear combinations vj � Xaj for j � 1; . . . ;M that are

contemporaneously independent, that is, E �v 0jvj 0 � � 0 for j 6� j 0, and that are ordered
according to their predictability. The predictability measure 
j re¯ects how much the

jth component can predict itself by a univariate Pth order autoregressive model

vt;j � f1vtÿ1; j � � � � � fPvtÿP;j � ~et; j � v̂t; j � ~et; j; where fp are scalar autoregressive

weights. Let �̂2j � E�v̂2t; j �, and let �2j � E�v2t; j�; then the predictability for vj is equal

to 
j � �̂2j =�2j , which is the proportion of variance of vj explained by the systematic

part v̂j . For the ®rst predictable component, the goal is to ®nd a weight vector a1 such

that the linear combination v1 � Xa1 has maximum predictability 
1. Next, a second

predictable component, orthogonal to the ®rst, can be identi®ed, and so on. To see

how this problem can be solved within the present framework write all components

simultaneously as

V �
XP
p�1

BpVFp � E

Since V � XA, this can be rephrased in terms of the observed data as

XA �
XP
p�1

BpXAFp � E �
XP
p�1

BpXAp � E

where Ap � AFp . It is now easy to see that the problem of determining maximum

predictability is equivalent to ®nding the largest canonical correlations between X

and �BX ; . . . ;BPX �. The relationship with canonical correlation analysis has been

studied by PARZEN and NEWTON (1980) and VELU, REINSEL, and WICHERN (1986). The

latter authors found that 
j is equal to the squared canonical correlation. For

categorical data, the problem is now to minimize the loss

��Z;X ;A0; . . . ;AP� � ssq�Z ÿ XA0� � ssq Z ÿ
XP
p�1

BpXAp

 !

over Z, X and A0 ; . . . ;AP; with orthogonal Z. The predictable components are then

equal to V � XA0 . Since V approaches the orthogonal matrix Z the components

themselves are nearly orthogonal. An application of this technique to multivariate

categorical time series can be found in VAN BUUREN (1992).

4.4 Spatial models

In time series analysis, observations are linked in the direction of time by means of the

backshift matrix. Spatial dependency on a two-dimensional surface is more complex

since observations may in¯uence each other in several directions simultaneously.

Examples of spatial dependency occur in agriculture, where experiments plots have
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common borders, in the analysis of social networks, and in the study of environ-

mental pollution. It is often possible to code dependencies among analysis units by

means of an adjacency matrix, a more general form of the backshift matrix. Using the

loss function as before is straightforward since the minimization procedure does not

use the fact that B is a special matrix. The algorithm holds for any real T � T matrix

B. There is no experience with this particular application.

4.5 Cross-sectional multivariate analysis

The loss function approach as outlined in section 2 can also be extended to

multivariate analysis for cross-sectional data. For example, this can be done by

replacing the lagged variables by conventional multi-attribute data. Actually, all

methods described in this paper are special cases of the canonical class as de®ned in

VAN BUUREN (1990, p. 128). This class also generalizes OVERALS, the most ¯exible

of Gi®'s techniques, and thus automatically covers the special cases like nonlinear

discriminant analysis, regression analysis, homogeneity analysis, principal compo-

nents analysis, canonical correlation analysis and MANOVA (cf. GIFI, 1990, p. 329).

The estimation procedure for the canonical class is known. The major technical

contribution of the method is that it allows to equate the transformations of an

arbitrary subset of variables. This property was used in autoregression to equalize the

transformation functions of the P� 1 di�erent lags of the same series. It is also useful

for the analysis of ranking data, missing data and event history data (VAN BUUREN

and DE LEEUW, 1992).

5 Discussion

This paper describes a method for transforming categorical time series that are

measured on nominal, ordinal and numerical scales. The underlying model consists

of two main pieces: a scaling component and a linear time series component. An

alternating least squares algorithm was derived that transforms the data such that it

is optimal with respect to the linear model. Some extensions to other than auto-

regressive models were also indicated.

Questions related to the minimum order of the model can be handled by the

iterative Box±Jenkins strategy based on autocorrelations and partial autocorrela-

tions. A complication is that transforming a series changes its autocorrelation.

Therefore autocorrelations are not comparable across models that depend on

di�erent transformations. Thus, using autocorrelations for identi®cation is question-

able. Experience shows that transformations primarily depend on one or two best

®tting time lags. Therefore, cautioned use of Box±Jenkins identi®cation techniques is

possible as long as the most in¯uential predictors are preserved.

Stochastic variation due to ®nite sampling has played no role so far. The method

does not provide standard errors of the estimates, so it is not possible to assess the

accuracy of the results or to test for statistical signi®cance. One approach would be to

obtain asymptotic standard errors from conventional linear time series analysis
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applied to the optimally scaled data. This method e�ectively uses the quanti®ed data

as if they had been real. Despite some work in this area (e.g. DE LEEUW, 1988), such a

two-step procedure is not recommended in general since the e�ects that scaling may

have on the estimates and their standard errors are not well understood. A safer way

is to use bootstrap methods for the autoregressive model as in EFRON and TIBSHIRANI

(1993, p. 92±102). It is not correct to resample from the individual observations as in

conventional bootstrap methods since this destroys the serial correlation. Instead,

one may use a moving block bootstrap, a model-free resampling method in which not

individual observations, but entire blocks of observations are sampled. The method

assumes that the length of the block is su�cient to preserve the time dependent

relations. This technique is promising, but not much practical experience is currently

available. HJORTH (1994) contains further methods for resampling time series.

The method is currently limited to categorical data. For continuous data, it is

certainly worthwhile to replaceG in x � Gy by a matrix of B-splines. An advantage of

this is that the transformation function becomes smoother by borrowing strength from

adjacent values. Furthermore, no arbitrary coding of continuous variables into

categories is needed anymore. The y-values in such a setup correspond to the knot

locations of the spline. These locations can be optimized to ®t a linear model. For

homogeneity analysis, this was done by VAN RIJCKEVORSEL (1987). The generalization

is straightforward and easy to compute. It is more di�cult to incorporate moving

average terms into the model. The major problem is that this leads to a nonlinear

optimization problem that cannot be solved by least squares. Thus, it is not yet

possible to integrate optimal scaling and full ARMA modeling. Another general-

ization would be to include not only to analyze lags of x, but also lags of z. For

example, optimizing over lagged z open up a whole box of interesting techniques like

exponential smoothing, (replicated) dynamic factor analysis and state spacemodels. A

more elaborate account of this potential is nonetheless beyond the scope of this paper.
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Appendix: Procedure to minimize (6) over y

Let Cs � BsG and let y � yo � �yÿ yo� � y� �, where yo is some old solution

satisfying all appropriate constraints. Then (6) can be written as a function of y

only as

��y� � ssq�zÿ C 0�yo � ��a0� � ssq zÿ
X
p

Cp�yo � ��ap
 !

� ssq��zÿ C 0yoa0� ÿ C 0�a0� � ssq zÿ
X
p

Cpyoa0

 !
ÿ
X
p

Cp�a0

 !

Let p1 � zÿ C 0yoa0 and p2 � zÿPp C
pyo a0 then

��y� � ��yo� ÿ p01C
0�a0 ÿ p02

X
p

Cp�ap

 !
� ssq�C 0�a0� � ssq

X
p

Cp�ap

 !
� ��yo� ÿ 2� 0u� � 0W�;

where u � C 00p1a0 � �pC
p0p2ap and W � �a0 
 C 0�0�a0 
 C 0� � ��pap 
 Cp�0

��pap 
 Cp�, and where 
 stands for the Kronecker product. Let �2�W � denote
the largest eigenvalue of the symmetric matrixW , and choose a constant � � �2�W �.
Because � 0W� � �� 0� for symmetric W it follows that ��y� � ��yo� ÿ 2� 0u� �� 0�.
The problem is now to minimize the quantity ÿ2� 0u� �� 0� over �, as this lowers the
upper bound on ��y�. Remember that � � yÿ yo, and de®ne yu � u=�. Then

�� 0� ÿ 2� 0u � �ÿ�yÿ yo�0�yÿ yo� ÿ 2�yÿ yo�0yu � yu 0yu ÿ yu 0yu
�

� �ÿyÿ �yo � yu�
�0ÿ

yÿ �yo � yu�
�ÿ�yu 0yu:

Since yuyu is ®xed, the problem reduces to ®nding the minimum ofÿ
yÿ �yo � yu�

�0ÿ
yÿ �yo � yu�

�
over y. If y is not subject to constraints, the solution of this problem is simply to set

y � yo � yu . For ordinal and numerical scales, monotone and linear constraints on y

are applied by regression as in Gi® (1990, p. 169±170). Constant � is often taken as

� � �2�W � since this gives maximal update increments.
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