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Abstract

In this paper a novel method to obtain the treatment effect called multiple impu-

tation of unobserved potential outcomes is evaluated by comparing its performance

to the Student’s t-test and ANCOVA. The novel method originates from Rubins

potential outcomes framework which explicitly defines that each unit has a possible

active treatment and control treatment outcome. Since every unit can only be as-

signed to one treatment, one of the potential outcomes is unobserved for each unit.

To approximate calculating the treatment effect, the unobserved potential outcomes

are multiple imputed. To start at the basics of group comparisons, the paper is

restricted to completely random groups. The method is evaluated by a series of

simulations using a realistic, empirical synthetic population. Overall, the results

show that the novel method performs up to standards: bias is negligible compared

to the standard error and 95 per cent confidence interval coverage is above 90 per

cent. Also, the novel method is more efficient and powerful than the frequently used

Student’s t-test when the relation between the covariates and potential outcomes is

linear. Multiple imputation of potential outcomes performs approximatly equally

well as classical ANCOVA. At a small sample size, the novel method is somewhat

more powerful when the assumption of parallel slopes is violated, but it is slightly

less efficient than ANCOVA for all used properties of covariates, sample sizes and

effect sizes.
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1 Introduction

One of the most common purposes of psychological and medical research is to examine
the effect of a treatment. Methods commonly used to obtain the treatment effect in a
completely randomized design are testing the simple mean difference with the Student’s
t-test or testing adjusted means with analysis of covariance (ANCOVA). A comparative
review of the performance of various methods to obtain the treatment effect is provided
by Schafer and Kang (2008). In their paper, one novel method to obtain the treatment
effect is not assessed: multiple imputation (MI) of unobserved potential outcomes. The
objective of this paper is to fill this void by evaluating this novel method.

The approach to multiply impute potential outcomes originates from Rubin’s poten-
tial outcomes framework (Little & Rubin, 2000; Rubin, 2005) and has been put forward
by Rubin on several occasions (e.g. Rubin, 2004, 2006) but has not been assessed yet.
The potential outcomes framework proposes a structure for causal inference where every
unit has two possible outcomes: an active and control treatment group outcome. Because
every unit can only be assigned to one treatment, one of the potential outcomes is un-
observed for each unit. Rubin suggests an extensive missing data perspective in applied
and theoretical statistical problems. According to this perspective, a scientific problem
should be viewed as one where the scientific answer could be calculated if some missing
data were available, instead of statistically inferred. To approximate calculating the treat-
ment effect, the unobserved potential outcomes are multiple imputed. MI is the preferred
method to obtain the unobserved potential outcomes because repeating imputations not
only produces estimates that are approximately unbiased and efficient, but reflects the
uncertainty of these estimates as well (Rubin, 1987).

The novel method proposed in this paper is almost identical to Bayesian causal infer-
ence, where the inference of the treatment effect follows from the predictive distribution
of the unobserved potential outcomes (Rubin, 1978). This Bayesian approach to causal
inference has recently been applied by Dominici, Zeger, Parmigiani, Katz, and Christian
(2006) and by Jin and Rubin (2008). Bayesian causal inference however requires specialist
programming every time an analysis is executed. Also, a good understanding of Bayesian
statistics in general is required. Because MI of unobserved potential outcomes is more
user friendly and easier to understand for researchers not familiar with Bayesian statistics,
the focus of this paper will be on the former.

MI of unobserved potential outcomes uses the information of the covariates in order
to impute the unobserved potential outcome and thus be able to utilize both the observed
outcomes and unobserved potential outcomes. Thereby, it increases power and efficiency
compared to methods that only make use of the observed outcomes, simply because it
uses more information. One prerequisite to decrease the standard error (SE) of and vari-
ability between the estimates is however that the imputations of the unobserved potential
outcomes must be precise enough not to induce much uncertainty. It is expected that
multiply imputing unobserved potential outcomes is more efficient and powerful than the
Student’s t-test, since this frequently used method in a completely randomized design
only makes use of the observed outcomes. Yet using covariates to increase efficiency and
power is not new. A well-known method that utilizes this principle as well with com-
pletely randomized groups is Analysis of covariance (ANCOVA). If the used data meets
the assumptions of ANCOVA, there will most likely not be a large difference between the
performance of MI of potential outcomes and ANCOVA.

The assumptions of classical ANCOVA to ensure the validity of the estimated treat-
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ment effect are however quite rigid: the outcome needs to vary linearly with the covariates
with identical slopes for both treatment groups. Because MI of unobserved potential out-
comes is a more flexible model, the two previously mentioned assumptions do not have to
be met. As a result, MI of unobserved potential outcomes is expected to provide a much
closer approximation to the true model than ANCOVA in cases where the data deviates
from these ANCOVA requirements. Therefore, it is hypothesized that MI of unobserved
potential outcomes outperforms classical ANCOVA in terms of power and efficiency when
the data deviates from the ANCOVA requirements.

The objective of this paper is to investigate whether and under which circumstances MI
of unobserved potential outcomes improves the quality of obtaining the treatment effect
compared to current commonly used methods. In this paper, quality of causal inference is
operationalized as power and efficiency. The used comparison methods are the Student’s
t-test and the classical ANCOVA. Also, it is investigated under which circumstances in
terms of number of covariates used and strength of relationship between the variables the
novel method works best. In addition, the method is illustrated through an application
of MI of unobserved potential outcomes. To start at the basics of group comparisons, the
paper is restricted to completely random groups.

The paper is organized as follows. In Section 2, the potential outcomes framework is
further described to clarify the building blocks for the novel method. Section 3 outlines
the method and application of MI of potential outcomes. In Section 4, MI of potential
outcomes is evaluated by comparing the novel method to commonly used methods through
simulation studies for various conditions. The application of the novel method is provided
in Section 5 and all results are discussed in Section 6.

2 The potential outcomes framework

The potential outcomes framework explicitly defines that each unit has a possible active
treatment and control treatment outcome (Neyman, 1923; Rubin, 1974b, 1978). This
framework provides the building blocks for MI of unobserved potential outcomes, which
defines the treatment effect as the individual difference between both potential outcomes.
This definition of the treatment effect according to the potential outcomes framework is
often buried under notation of commonly used methods (Little & Rubin, 2000). Also, by
making the definition of the treatment effect explicit, basic assumptions that need to be
met for causal inference are made more explicit than they usually are (Holland, 1986).
Therefore, a description of the potential outcomes framework and its assumptions are
provided below.

The average treatment effect

The point of view that each unit has multiple outcomes was introduced by Neyman (1923),
who used it to define the treatment effect in the context of a completely randomized
experiment in a hypothetical agricultural example. Rubin elaborated on this by proposing
a similar viewpoint within the context of nonrandomized, observational studies (Rubin,
1974b, 1978), producing a framework extending the idea beyond randomized experiments
and randomization-based inference. This framework is commonly referred to as Rubin’s
causal model (RCM) (Holland, 1986) and is frequently used in statistics and epidemiology
(Höfler, 2005; Rubin, 2005).
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Let Ti denote the treatment assigned to the ith unit for i = 1, ..., N where N denotes
the number of units. The assigned treatment can either be Ti = 1 when the unit is actively
treated or Ti = 0 when the unit is not actively treated. Furthermore, let Yi1 denote the
response when the ith unit is assigned to the active treatment, Yi0 denote the response
when the ith unit is assigned to the control treatment. Furthermore, Xik for k = 1, ..., K
denotes the matrix of covariates which are assumed to be independent of treatment. In
Table 1, a hypothetical example to clarify the potential outcomes framework is given for
a sample of 6 units. The potential outcomes for a set of units can be depicted as an N ×
2 matrix, as presented in Table 1. Besides the potential outcomes, several covariates, the
treatment indicator and the unit level treatment effect are given for the sample as well.

The golden standard as stated by the RCM to obtain the estimate of interest (Rubin,
2005), the average treatment effect (ATE), is the averaged difference between the potential
outcomes for every unit:

ATE = E(Di) = E(Yi1 − Yi0), (1)

where Di denotes the difference between the potential outcomes. When hypothetically all
potential outcomes are observed, the ATE is estimated by

�ATE1 =
1
N

N�

i=1

Di =
1
N

N�

i=1

Yi1 −
1
N

N�

i=1

Yi0. (2)

Applying Equation 2 to the potential outcomes of the hypothetical example shown in
Table 1 yields an estimated �ATE1 of - 0.50. Equation 2 is considered ideal because the
estimate is unbiased and reasonably efficient regardless of the distribution of the data.

The golden standard of �ATE1 can however not be obtained. Only one of the potential
outcomes can be observed for a unit, as units can be assigned to one treatment condition
only. This dilemma is referred to as the fundamental problem of causal inference (Holland,
1986). Therefore, techniques for causal inference are in essence missing-data methods. The
conventional way to deal with this problem is to aggregate the data of the actively treated
units and the control treated units to a group mean. The treatment effect is then inferred
instead of calculated by taking the difference between the observed group means. Hence,

Table 1: Illustration of the potential outcomes framework, where mean individual treatment

effect denotes the ATE1

Individual
Covariates Treatment Potential outcomes treatment effect

Units Xi1 ... Xik Ti Yi1 Yi0 Di

1 1 ... 20 0 2∗ 2∗ - 0∗

2 2 ... 31 0 2∗ 4∗ - 2∗

3 2 ... 18 1 6∗ 5∗ - 1∗

4 1 ... 39 0 4∗ 5∗ - 1∗

5 1 ... 40 1 2∗ 3∗ - 1∗

6 2 ... 26 1 5∗ 5∗ - 0∗

Mean 1.5 ... 29 0.5 3.5∗ 4∗ - 0.5∗

Note:* Values not actually observed.
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the ATE is estimated by

�ATE2 =
1
n1

N�

i=1

TiYi1 −
1
n0

N�

i=1

(1− Ti)Yi0, (3)

where n1 denotes the sample size of the treatment group and n0 denotes the sample size
of the control group. When Equation 3 is applied to the example, an �ATE2 of 0.67 is now
obtained. Note that only the observed values are now used, values complemented with an
asterisk are not brought into the computation.

The precision and statistical significance of the �ATE2 can be assessed using the t-
distributed 95 per cent confidence interval (CI),

�ATE2 ± t.05/2,N−1 sȲ1−Ȳ0
, (4)

where

sȲ1−Ȳ0
=

�
(n1 − 1)s2

1 + (n0 − 1)s2
0

n1 + n0 − 2
(5)

is the pooled standard deviation of the two treatment groups, where s2
1 is the variance of

the active treatment and s2
0 is the variance of the control treatment (Miller, 2004). The

t-distributed CI is used because the mean and standard deviation are assumed unknown.
In the following sections, a method based on MI of the unobserved potential outcomes is
presented. Using this method, the hypothesis is that the obtained 95 per cent CI shows
better properties compared to only using the observed outcomes.

Basic assumptions of the ATE

In order for the �ATE to be an unbiased estimate of ATE, a few basic assumptions need
to be met. First of all, the stable unit treatment value assumption (SUTVA) (Rubin,
1980, 1990). SUTVA even applies if hypothetically all potential outcomes are observed
for each unit. SUTVA assumes that the treatment effect for any unit does not depend on
the treatment assignment of other units and there are no other (hidden) versions of the
active and control treatment. An example of an (hidden) extra treatment would be when
the dose of the active treatment is mistakenly not the same for every unit, for example a
high and a low dose. In this case there would actually be three treatments instead of two:
low dose active treatment, high dose active treatment and control treatment. When the
SUTVA assumption is met, it truly can be stated that every unit has only two potential
outcomes because there are only two distinct possible treatments for every unit.

When only the observed potential outcomes are available, extra assumptions regarding
the relationship between treatment assignment Ti and the potential outcomes Yi1 and Yi0

are required (Rubin 1978, 2005). For �ATE2 to be an unbiased estimate of ATE, the
two treatment groups must consist of a common set of units from the same population.
Since the treatment assignment determines which units make up the active and control
treatment group, the mechanism behind the treatment assignment determines if this as-
sumption is met. This is known as the treatment assignment mechanism (Rubin, 1978),
which can be seen as a mechanism that determines which of the potential outcomes are
unobserved taking into account the covariates and the potential outcomes itself. The
treatment assignment mechanism can be stated as the probability of the treatment as-
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signment Ti being active treatment or control treatment given the covariates Xi and the
potential outcomes Yi1 and Yi0, which can be written as

Pr(T |X,Y1, Y0). (6)

Equation 6 can be further refined, since some of the potential outcomes for both the active
and control treatment are observed (Y obs

1 and Y obs
0 ), and some are not (Y mis

1 and Y mis
0 ):

Pr(T |X,Y obs
1 , Y obs

0 , Y mis
1 , Y mis

0 ). (7)

In Equation 7 the actual value of Pr(T ) is unknown, because a part of the equation is
unobserved. In other words, the unobserved potential outcomes are missing not at random
(Rubin, 1976). Since we do not have all information of the full mechanism that causes
units to be assigned to either treatment group, we cannot compare the two groups unless
other unverifiable assumptions are made about the missingness. For further information
on variables that are missing not at random, see Schafer and Graham (2002).

In the special case of a complete randomized experiment, the treatment assignment
Ti is independent of the potential outcomes Yi1 and Yi0, observed or unobserved, and the
covariates Xi (Rubin, 1978), that is

Pr(T |X,Y1, Y0) = Pr(T ). (8)

The two groups can be seen as a completely random common set of units, and thus making
the difference between the observed group means an unbiased estimate of �ATE1 without
needing any extra requirements (Rubin, 1974b). This also implies that the unobserved
potential outcomes are missing completely at random (Rubin, 1976). It is theoretically
important that Pr(T ) is not 0 or 1 (Rubin, 1978), so each unit has a chance to be selected
in either treatment. Otherwise, the comparison between the potential outcomes would
be of no meaning. The treatment effect itself is not assumed to be a constant value for
all units, the effect of treatment can vary over units. This implies that the correlation
between potential outcomes can deviate from 1.

3 Multiple Imputation of unobserved potential out-
comes

The above described �ATE2 does not make use of the measured covariates. This is ineffi-
cient, because in case of a complete random experiment covariates can be used to increase
efficiency of the estimate (Little & Rubin, 2000). MI of unobserved potential outcomes
does utilize the information provided by the covariates, which will be described next.

Novel method: making use of covariates by multiple imputation

A straightforward way to think about missing data is to consider how to multiply impute
them (Rubin, 2004, 2006). The novel method multiply imputes the unobserved potential
outcomes.

Suppose that for the active treated units only the observed potential outcomes Y obs
i1 are

linearly regressed on the covariate measures Xi. By doing this, a model for Yi1 is obtained.
Assuming the treatment assignment mechanism is ignorable, draws can be generated from
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the posterior distribution of Y obs
i1 |Xi by methods developed in Rubin (1987, p. 167). The

draws can be obtained regardless of treatment assignment. The same can be done for the
control treatment outcome. Using the observed values for the control group, a model for
Yi0 is obtained by linear regressing Y obs

i0 on the covariates Xi. Next, the model is used to
obtain a draw from the posterior distribution of Y obs

i0 |Xi for all units. Now, for every unit
a draw for both active and control treatment is available, besides the observed value for
one of the two treatments.

Whether a separate model for each variable with missingness must be specified, or if
just one joint model for the missingness is specified, depends on the method used for the
MI. What the draw consists of and how it is used to obtain the imputed value, depends
on the model used for the MI. Although fully conditional specification (FCS) introduced
by van Buuren, Brand, Groothuis-Oudshoorn, and Rubin (2006) in combination with
predictive mean matching (PMM), proposed by Little (1986) is used exclusively in this
paper, MI of potential outcomes could be applied using another method or model to
perform MI as well.

With FCS, a separate conditional model for each variable with missingness based on
the remaining observed variables is specified. Next, each variable is completed by imput-
ing a value based on the variable-specific model for each missing value. The imputations
are carried out by iterating over all conditional models, where each iteration consists of
one cycle through all variables with missingness. A considerable advantage of FCS is its
flexibility. The imputation model for the missingness in the data consists of multiple uni-
variate densities, making it for example uncomplicated to combine different measurement
levels (van Buuren et al., 2006; van Buuren, 2007).

With PMM, the imputed value for the unobserved potential outcome is obtained as
follows. For both potential outcomes separately, coefficients for the slopes and variances
and covariances are drawn from the posterior distribution Y obs

i1 |Xi and Y obs
i0 |Xi. Using

these drawn estimates, the predicted values for both the observed outcomes and unob-
served potential outcomes are computed. Next, every predicted score of an unobserved
potential outcome has a few matches with the closest predicted values of observed out-
comes. From the observed outcomes that match the unobserved potential outcome, one
observed value is randomly selected and imputed as observed value for the unobserved
potential outcome. Since only values that are actually observed in the data are imputed,
PMM has potential to preserve non-linear relations even if these are not included in the
structural part of the imputation model (Little, 1988).

With the imputed values, a new complete dataset is created in which the observed
outcomes remain and the gaps of the unobserved potential outcomes are filled with im-
puted potential outcomes. This process is repeated m times, creating m complete datasets
where the observed outcomes are equivalent and the imputed unobserved potential out-
comes slightly differ in each dataset. It should be noted that the number of units used to
estimate the model needs to be sufficient in order to prevent the scenario that the same
value is imputed each time when using PMM (Little, 1988).

When MI of the unobserved potential outcomes is completed, �ATE1 can be computed
for every dataset using Equation 2, since the unit level treatment effect is available for
each unit. Next, the m versions of �ATE1 are pooled to obtain one single outcome measure
by

ATE1 =
1
m

m�

j=1

�ATE1j , (9)
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where m is the number of replications and �ATE1j is the estimated �ATE1 in replication
j. The pooled SE of ATE1 is obtained by

S.E.(ATE1) =

���� 1
m

m�

j=1

s2
j +

�
1 +

1
m

��
1

m− 1

� m�

j=1

� �ATE1j −ATE1

�2
, (10)

where sj is the estimated SE in replication j. Both equations are derived from Rubin’s
(1987) classical equations to pool an estimate and its SE from multiple datasets. Now,
using the pooled ATE1 and its pooled SE, the precision and significance of ATE1 can
again be assessed using the t-distributed 95 per cent CI,

ATE1 ± t.05/2,N−1S.E.(ATE1). (11)

Assumptions of MI of potential outcomes

Besides the assumptions specified for the estimation of the ATE, various other assump-
tions need to be made to obtain ATE1 from the observed data. First of all, a separate
conditional model is specified for the unobserved active and control treatment outcomes.
Therefore the relation between the potential outcomes is not taken into account. This
implies that the partial correlation between the potential outcomes Yi1 and Yi0 given the
covariates Xi, ρY1Y0 .X , is assumed to be zero. This assumption cannot be checked, for the
reason that ρY1Y0 .X cannot be estimated from the data (Rubin, 1974a). This might seem
a problem, but the estimation of the ATE actually is not biased by the partial correlation
that is assumed between the potential outcomes (Gelman, Carlin, Stern, & Rubin, 2004,
p. 219).

Other assumptions that are more general to estimating a treatment effect also hold
for MI of unobserved potential outcomes. An obvious but important assumption is that
the models correctly represent the relationship between the potential outcomes and co-
variates. Another requirement is that the active and control treatment group should have
a substantial overlap in the distribution of the covariates. Otherwise, extrapolation is
required to estimate the unobserved potential outcomes, which strongly relies on various
assumptions. See King & Zeng (2006) for an elaborate clarification on the dangers of
extrapolation. Since this paper is restricted to completely randomized groups, no further
assumptions about the model of the distribution of the treatment assignment (Ti) are
required.

4 Simulation studies

In this section, the conducted research plus its result are discussed. The conducted re-
search consists of two parts, which are both performed using R64 2.10.1(R Development
Core Team). In part one, MI of unobserved potential outcomes will be evaluated by
comparing the performance of the novel method to the Student’s t-test and ANCOVA for
a dataset which is as natural as possible. Several research settings are used in order to
mimic a variety of possible situations for when MI of unobserved might perform differently
compared to the other methods. In part two, it is investigated with which set of covariates
the novel method works best. Also, it is checked if a violation of the assumption ρY1Y0 .X

= 0 influences performance.
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In this paper, the MI described above is carried out using Multivariate Imputation by
Chained Equations (MICE) (van Buuren & Oudshoorn, 2000), available as R package.
The number of imputations used is m = 20, since the rate of missing information is likely
to be high (Rubin, 1987, p. 132). The number of iterations is set at 10 because with
predictive mean matching it is especially important to check whether the estimate has
converged (Little, 1988; van Buuren & Oudshoorn, 2000).

Part I: Comparative evaluation of the novel method

To evaluate multiply imputing unobserved potential outcomes, three simulation studies
all using an empirical synthetic population are conducted. In this way, the true treatment
effect in the population will be known, and the problem that naturally occurring popula-
tions rarely conform to assumptions of a simple parametric model is avoided. First, the
whole natural dataset will be used to compare the three methods, where the structure
of the covariates meets the requirements of ANCOVA. Next, a trimmed version of the
natural dataset using only a subset of the covariates is used, where the relation of the
covariates with the potential outcomes is artificially altered to compare performance when
the dataset does not meet the ANCOVA requirements. On top of this, two aspects which
directly influence efficiency and power are varied: sample size and effect size.

The empirical data on which the synthetic populations are based is the Social Medical
Survey of Children attending Child Health Clinics (SMOCC) (Herngreen, Reerink, van
Noord-Zaadstra, Verloove-Vanhorick & Reys, 1992; Herngreen, van Buuren, Wieringen,
Reerink, Verloove-Vanhorick, & Ruys, 1994). The SMOCC is a longitudinal study project
concerning a representative Dutch sample of a birth cohort including various perinatal and
longitudinal measures of the child and various maternal and other parental characteristics.
For the simulation study, the effect of breastfeeding on weight of the child at an average
age of two months is utilized as the treatment effect of interest. The synthetic populations
are created using the steps outlined in Appendix A.1.

The empirical synthetic populations

All three populations created consist of one million cases. In the synthetic populations,
the longitudinal design, item nonresponse or selective dropout of the SMOCC data is not
mimicked because it would detract from the main issue at hand. The selective dropout
of this data is highlighted by van Buuren (2010). For each of the one million cases in
each dataset, the potential outcomes and various covariates are available, which are all
described next.

The outcome measure weight at an average age of two months is measured in grams.
Each baby has two potential outcomes: weight when exclusively breastfed (EBF, denoted
by Yi1) and weight when not exclusively breastfed (no EBF, denoted by Yi0). For each
baby, both potential outcomes are simulated for all datasets. The value of the treatment
assignment indicator (Ti) reflects which of the two outcomes are used as observed outcome
in the simulation. Table 2 shows the simulated outcomes for a small subsample of babies
from the base empirical synthetic population, where Di denotes the unit-level treatment
effect for each baby. Also, the mean and standard deviation for each outcome is included,
which is similar for all three populations. The mean unit-level treatment effect for the
populations represents ATE1. The effect of breastfeeding on weight at 2 months is small
to medium, with Cohen’s measure of effect size d= .26.
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Table 2: Illustration of the empirical synthetic population dataset: Treatment assignment (Ti),

potential outcomes (Yi1) and (Yi0), and unit-level treatment effect (Di) for a small subset of

babies plus mean (M) and standard deviation (SD) in population

Baby i Ti Yi1 Yi0 Di

1 1 5008∗ 4637∗ - 371∗

2 1 4126∗ 4922∗ - 796∗

3 0 4498∗ 5198∗ - 700∗

4 1 5456∗ 5348∗ - 108∗

. . . . .

. . . . .
1.000.000 0 5908∗ 5759∗ - 149∗

M in population 0.5 5207.9∗ 5047.0∗ - 160.9∗

SD in population 0.5 649.6∗ 588.3∗ - 514.4∗

Note. Ti = breastfeeding behavior ( 1 = baby is exclusively breastfed, 0 = ba-
by is not exclusively breastfed); Yi1 = weight at 2 months when exclusively
breastfed; Yi0 = weight at 2 moths when not exclusively breastfed. ∗ Values are
known to the researcher but are not used in the analyses since they are unobserved.

Besides the potential outcomes for weight, various covariates of the SMOCC data are
included in the synthetic datasets. The most crucial covariate is birthweight (birthw), since
it is highly correlated to the outcome measure (r = .626) and so an effective predictor
of weight at 2 months. All covariates used in this research plus their mean, standard
deviation and relation to both potential outcomes are presented in Table 3. The decision
to include these variables is based on the study by Herngreen, van Buuren, van Wieringen,
Reerink, Verloove-Vanhorick and Ruys (1994) on the relationship between background
characteristics and length and weight for children followed-up from birth to the age of two
years. In the base empirical synthetic population, all described covariates are used. In
both trimmed synthetic populations, the covariates presented in bold in Table 3 are used.

For the base empirical synthetic population, the structure of the covariates meets the
classical ANCOVA assumptions of linearity and parallel slopes. For the trimmed synthetic
populations with altered covariates, all means, standard deviations and correlations pre-
sented in Table 2 and 3 hold unless specified otherwise. For the first trimmed synthetic
population, the correlations of the covariates with the active and control treatment are
altered in such a way that the assumption of equal slopes for both treatment groups is vi-
olated. Details are provided in Appendix A.1. The correlations do not only differ between
active and control treatment outcome, but also in the strength of their relation with the
potential outcomes. This is because the more different the relations with the potential
outcomes are for the covariates, the more one single model to describe the relation be-
tween the covariates and potential outcomes is a misfit. For the second trimmed synthetic
population, the alteration is applied in the kind of relationship between the covariates
and potential outcomes. For the covariates birthw and days2 this is made curvilinear
instead of linear. For both covariates, a deviation from the mean covariate value results
in an higher outcome weight at 2 moths. For both trimmed datasets, not the most sim-
plest model with one covariate was used since MI of unobserved potential outcomes needs
a certain amount of explained variance by the covariates for each potential outcome to
perform well.
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Table 3: Description, mean, standard deviation and relation to potential outcomes of covariates

in synthetic populations. All presented covariates are included in the base empirical synthetic

population, only the covariates presented in boldface are included in the trimmed synthetic

populations

Name Description M SD ρY1
ρY0

Birthw Weight in grams at birth 3613.8 506.9 .60 .64
Days2 Age of child in days on measurement 2 58.9 6.2 .19 .28
Sex Sex of the child 0.5 0.5 - .34 - .30
SES Highest attained formal educational level of 1.7 0.8 .09 .01

the mother ( 1 = low, 2 = mid-low, 3 = mid-
high, 4 = high)

AgeM Age of mother at delivery in completed years 29.2 4.5 .05 .01
Parity Number of live and still-births after a gesta- 0.9 0.9 .15 .13

tion of 23 weeks or more
Dutch Parents Dutch (1 = Dutch, 0 = otherwise) 0.9 0.3 - .07 - .04
Med Parents Mediterranean (1 = Mediterranean, 0 0.0 0.2 .08 .03

0 = otherwise)
HightM Height mother in completed centimeters 168.1 6.8 .19 .19
HightF Height of father in completed centimeters 178.0 7.5 .12 .11
GA Gestational age in completed weeks 39.6 1.6 .21 .23

Design

The simulations are performed as follows:

1. Randomly, an active treatment sample of size n1 = 100 and a control treatment
sample of size n0 = 100 are drawn without replacement from the base empirical
synthetic population, creating a total sample size of N = 200. The original effect
size of .26 is used.

2. The MI of unobserved potential outcomes, the Student’s t-test and ANCOVA is
carried out for the sample to estimate the treatment effect. The covariates used are
birthw, sex, age of mother, gestational age, height of mother, height of father and
days2. Only main effects are used. This simplified model is used in order to create
an extra dimension of reality, for the reason that in applied research not all variables
and relations of the mechanism behind the outcomes are available or even known.

3. The outcome measures are as follows: ATE1 for MI of unobserved potential out-
comes, �ATE2 for the Student’s t-test and �ATE2,adj for ANCOVA, the SE of all
estimated treatment effects, bias of the treatment effects obtained, inclusion of true
treatment effect in 95 per cent coverage interval and significance of treatment effect
at α = .05. The ATE’s, standard deviations and biases are all in grams.

4. Step 1 to 3 are repeated 10000 times, for every 1000th sample it is checked if con-
vergence is reached.

5. The outcome measures that are needed for each cell in the design are obtained: mean
ATE1, mean �ATE2, mean �ATE2,adj , their mean SE in order to assess the precision
of the obtained estimates, the RMSE to assess bias of and variability between the

11



obtained estimates and percentage of significant treatment effects at α = .05 to
solely assess power. Besides the ATE’s and outcomes to asses efficiency and power,
percentage coverage of 95 per cent CI and mean absolute bias is obtained to evaluate
the performance of the methods. The mean �ATE’s, mean SE’s, mean biases and
RMSE’s are all in grams.

6. Steps 1 to 5 are repeated using an effect size of .00 and .50. To obtain the different
required effect sizes, a constant of 160.9 grams is subtracted and a constant of 149.0
grams is added to all outcomes of the active treatment group (Yi1). The values of
the constants are based on the value required for the empirical synthetic population
to reach the wanted effect size.

7. Step 1 to 6 are repeated using a total sample size of 50.

8. Step 1 to 7 are repeating using the trimmed empirical synthetic populations, where
the relation of the covariates differs for the active and control treatment outcome
for the first dataset, and the covariates have a curvilinear relation with the active
and control outcome for the second dataset.

Results Part I

For MI of potential outcomes, inspection of every 1000th sample of the parameter estimates
against iteration number indicates that convergence is reached for all variations in the
simulation. The values of the mean and standard deviation of the imputations vary with
iteration number and dataset number m and do not show any definite trend with iteration
number.

Both bias and difference in performance of the methods will be more easily statistically
significant than it may be practically relevant. Therefore other criteria than significance
are used. To evaluate bias, the rule of thumb that the magnitude of the bias in an
estimate should not exceed 40 per cent of its SE is used. According to Collins, Schafer
and Kam (2001) this is the value when the bias starts to impair the performance of
CI’s and hypothesis tests. To assess the difference in performance of the methods, the
differences between the outcomes will be evaluated while accounting for simulation error.
For the outcomes which are scaled in grams, a simulation error of 2 grams is used, for
outcomes scaled in percentages, a simulation error of 1 per cent is used.

General performance Tables 4 and 5 summarize the results of the simulations for the
base empirical synthetic dataset and dataset where the slopes of the covariates vary for
the treatment groups, for all used methods, sample sizes and effect sizes. As can be seen
in Table 4 and 5, in general the novel method performs up to standards. The observed
biases are small compared to the mean SE’s, and percentages of 95 per cent CI’s covering
the true population values are above 90 per cent. In comparison with the commonly used
methods, the coverage is approximatly 2.5 per cent lower. These results do not vary for
the applied alterations in the study.

For considerations of space, a table with results for the dataset where covariates have
a curvilinear relation with the potential outcomes is not provided in the text. Details of
these results are available from the authors upon request. Although CI coverage and bias
are up to standards for this dataset, the results clearly show that a more complicated model
is needed when relations are non-linear for the novel method to perform well in terms of
efficiency and power. Therefore, the results for this dataset will not be further discussed.
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Table 4: Performance of two commonly used methods with MI of unobserved potential outcomes

for the base empirical synthetic population: mean difference (ATE∗
), mean SE of difference

(S.E.∗), bias (Bias), RMSE (RMSE), percent coverage of 95 per cent CI’s (Cov) and percentage

of significant treatment effect at α = .05 (Sign)

n ATE∗(SE∗) Bias RMSE Cov Sign

d = 0.26
(AT E = 160.9)

t-test 157.7 (173.4) 3.2 177.4 94.8 13.8
50 ANCOVA 160.4 (132.6) 0.5 136.6 94.5 22.9

MI 160.7 (131.9) 0.3 145.6 92.7 24.0

t-test 159.0 (87.4) 2.0 89.3 95.1 43.7
200 ANCOVA 161.4 (62.2) 0.4 62.9 95.3 73.1

MI 161.4 (62.1) 0.4 67.8 92.9 71.5

d = 0.00
(AT E = 0.0)

t-test 3.2 (173.4) 3.2 177.4 94.8 5.1
50 ANCOVA 0.5 (132.6) 0.5 136.6 94.5 5.5

MI 0.3 (131.9) 0.2 145.7 92.4 7.6

t-test 2.0 (87.4) 2.0 89.3 95.1 4.9
200 ANCOVA 0.4 (62.2) 0.4 62.9 95.3 4.7

MI 0.5 (62.2) 0.4 67.7 92.8 7.2

d = 0.50
(AT E = 309.9)

t-test 306.6 (173.4) 3.2 177.4 94.8 40.3
50 ANCOVA 309.3 (132.6) 0.5 136.6 94.5 62.2

MI 309.6 (131.9) 0.2 146.0 92.3 61.4

t-test 307.9 (87.4) 2.0 89.3 95.1 93.9
200 ANCOVA 310.3 (62.2) 0.4 62.9 95.3 99.9

MI 310.1 (62.1) 0.2 67.6 92.7 99.7

Note: ATE∗, S.E.∗, Bias and RMSE are given in grams.

Usage of a dataset that meets the ANCOVA requirements or a dataset where the slopes
of the covariates vary for the treatment groups, sample size and effect size influences
differences in power and efficiency between the assessed methods in the following manner.

Power For the base empirical synthetic population there are no differences in power
between ANCOVA and the novel method which exceed the simulation error (4). For the
dataset where the slopes of the covariates vary for the treatment groups, MI of unobserved
potential outcomes yields on average the most precise estimate of the ATE per sample
with the smallest mean SE at a sample size of 50 (5). This obviously results in a higher
percentage of significant results. Both differences with ANCOVA are however not very
substantive and disappear at a sample size of 200. The Student’s t-test preforms worst
with a substantive difference in mean SE and percentage of significant results compared
to the other methods. The above presented differences between the methods do not differ
when effect size varies.

Efficiency The value of the RMSE is smaller for ANCOVA for all variations in the
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Table 5: Performance of two commonly used methods with MI of unobserved potential out-

comes for a dataset where covariates have unequal slopes for active and control treatment group:

mean difference (ATE∗
), mean SE of difference (S.E.∗), bias (Bias), RMSE (RMSE), percent

coverage of 95 per cent CI’s (Cov) and percentage of significant treatment effect at α = .05 (Sign)

n ATE∗(SE∗) Bias RMSE Cov Sign

d = 0.26
(AT E = 160.9)

t-test 159.5 (174.2) 1.4 177.3 94.8 14.4
50 ANCOVA 161.4 (142.9) 0.5 144.8 94.6 19.7

MI 159.9 (138.7) 1.0 154.2 92.0 22.4

t-test 162.5 (87.6) 1.6 89.1 95.1 45.2
200 ANCOVA 162.6 (70.0) 1.7 72.3 94.7 63.5

MI 162.3 (69.6) 1.3 76.2 93.1 62.3

d = 0.00
(AT E = 0.00)

t-test 1.4 (174.2) 1.4 177.3 94.8 5.2
50 ANCOVA 0.5 (142.9) 0.5 144.8 94.6 4.9

MI 1.0 (138.6) 1.0 153.2 92.5 7.6

t-test 1.6 (87.6) 1.6 89.1 95.1 4.9
200 ANCOVA 1.7 (70.0) 1.7 72.3 94.7 5.3

MI 1.2 (69.5) 0.7 76.0 92.9 7.1

d = 0.50
(AT E = 309.7)

t-test 308.3 (174.2) 1.4 177.3 94.8 40.1
50 ANCOVA 310.2 (142.9) 0.5 144.8 94.6 56.2

MI 309.0 (138.5) 0.6 153.4 92.1 57.6

t-test 311.3 (87.6) 1.6 89.1 95.1 94.1
200 ANCOVA 311.4 (70.0) 1.7 72.3 94.7 99.4

MI 310.7 (69.6) 1.0 75.7 93.0 99.0

Note: ATE∗, S.E.∗, Bias and RMSE are given in grams.

simulations compared to MI of unobserved potential outcomes. Since the biases are simi-
lar, the differences in RMSE can be attributed to a difference in variability between the
estimated treatment effects. ANCOVA is approximately 10 per cent more efficient than
MI of unobserved potential outcomes, where the relative efficiency is calculated as RMSE
of ANCOVA divided by RMSE of MI unobserved potential outcomes. The Student’s t-test
preforms worst with a substantive difference in RMSE compared to the other methods.
The above presented differences in efficiency do not differ when sample size or effect size
varies.

Part II: Dataset characteristics that influence performance

Because the imputed values of the unobserved potential outcomes get more precise when
more and better-predicting covariates are used, there is probably a trade-of between num-
ber and quality of covariates used for the imputation and the advantage in terms of
efficiency and power of the novel method. Also, it is possible that the performance of the
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method will differ with different partial correlations between the potential outcomes given
the covariate. To investigate the influence of number of covariates and of the correlations
and partial correlations of the variables on the performance of MI of unobserved potential
outcomes, four parametric datasets are created each consisting of one million cases. A de-
tailed description of the creation of the four parametric datasets is given in the Appendix
A.2.

The simulations are executed in similar fashion as described in Part I. The simulation
is only executed for MI of unobserved potential outcomes, and sample size and effect size
are not varied. Used sample size is n = 200. Used levels of the varied number of covariates,
strength of correlation between covariate and potential outcomes and partial correlation
between the potential outcomes given the covariate are provided in Table 6.

Results Part II

For MI of potential outcomes, inspection of every 1000th sample of the parameter estimates
against iteration number indicates that convergence is reached for all variations in the
simulation. To assess the difference in performance of the methods, the differences between
the outcomes are evaluated while accounting for simulation error. For the outcomes which
are scaled according to the original measurement, a simulation error of 0.01 is used, for
outcomes scaled in percentages, a simulation error of 1 per cent is used.

Table 6 summarizes the results of the simulations described in the previous subsection
for all four parametric datasets. Usage of different partial correlation between potential

Table 6: Performance of MI of potential outcomes for different number of used covariates

Xik, k = 1, ..., K, correlations between potential outcomes and covariate ρXY and partial cor-

relation between potential outcomes given the covariate(s) ρY1Y0 .X : mean difference (ATE∗
),

mean SE of difference (S.E.∗), bias (Bias), RMSE (RMSE), percent coverage of 95 per cent CI

(Cov) and percentage of significant treatment effect (Sign)

MI of potential outcomes
ρXY ρY1Y0 .X ATE

∗
1(S.E.∗) Bias RMSE Cov Sign

K = 1
.10 .29 1.00 (0.45) - 0.01 0.48 92.80 63.45
.10 .60 1.00 (0.45) 0.00 0.47 93.21 64.86

.30 .23 1.00 (0.30) 0.00 0.30 94.05 90.74

.30 .56 1.00 (0.30) 0.00 0.30 93.80 90.96

.60 ∗ - .09 1.00 (0.23) 0.00 0.25 92.38 98.66

.60 .38 1.00 (0.23) 0.00 0.25 92.34 98.66

K = 5∗∗

.50 & .36∗ - .09 1.00 (0.23) 0.00 0.25 92.41 98.46

K = 10∗∗

.50 & .33∗ - .09 1.00 (0.23) 0.00 0.25 92.89 98.13

Note: * These models only differ in the number of covariates used, since the explained va-
riance (R2 = .36) for these models is equal. The effect of using a different number of
covariates to obtain the model and predicted outcomes for Yi1 and Yi0 can be inferred
from these lines. ** The correlation between the covariates is set at .30.

15



outcomes given covariate and usage of a different number of covariates do not influence
the outcomes, since all differences are below the set value of the simulation error.

Usage of different correlations between covariates and the potential outcomes only in-
fluences the outcome measures used to assess efficiency and power. The precision of the
estimated ATE and the value of the RMSE decrease with larger correlations. Because the
bias is zero, it can be said that the decrease in the RMSE is caused by the decreased vari-
ability between the estimated effect sizes. The percentage of significant results increases
when the used correlation increases, although the difference in percentage of significant
results decreases with high correlations.

5 Application to a real dataset

In this section, the approach to multiply impute unobserved potential outcomes is illus-
trated using data from a clinical trial of the effects of chemotherapy on epileptic seizures
(Thall & Vail, 1990). The study compared the effect of the anti-epileptic drug progabide
with a placebo on 59 patients suffering from simple or partial seizures. Both treatments
are administered on top of standard chemotherapy, since progabide works as an adjuvant
for chemotherapy. The number of seizures was counted over four two-week periods. Mea-
sured covariates were baseline seizure rate (BSR) based on an 8-week pre-randomization
seizure count and age of the patient. The slope of the covariate BSR is significantly dif-
ferent for the active and control treatment group, p < .01. The covariate age does meet
the ANCOVA requirement of parallel slopes. The relationship between the covariates and
outcome measure is linear.

In this paper, the number of seizures counted over the four two-week periods are
transformed to a sum score and both covariates will be used. The sum-score of the
observed seizure rate in a four week period ranges from 0 to 302.

When the Student’s t-test is applied to the observed data using Equation 3, an esti-
mated average treatment effect of -3.31 (SE = 11.89) is obtained. Fitting the ANCOVA
model

Yi = β0 + β1Ti + β2BSRi + β3agei + �i, �i
iid∼ N(0, σ2) (12)

to the observed data gives

Yi = −31.92 +−2.57Ti + 1.45BSRi + 0.74agei + �i, �i
iid∼ N(0, 25.722). (13)

An estimated average treatment effect of -2.57 (SE = 6.80) is obtained.
Applying MI of unobserved potential outcomes, the following models for the active

and control treatment are obtained:

Yi1 = −55.54 + 1.78BSRi + 1.12agei + �i, �i
iid∼ N(0, 26.162). (14)

Yi0 = −26.32 + 1.05BSRi + 0.97agei + �i, �i
iid∼ N(0, 21.922). (15)

The MI is again performed using the R package MICE (van Buuren & Oudshoorn, 2000),
using the FCS model combined with PMM. The number of imputations is m = 20, the
number of used iterations is 10. The resulting estimated average treatment effect is -3.69
(SE = 6.13).

All estimated average treatment effects result in an nonsignificant result and the esti-
mated treatment effect of the three models agree closely. However, the SE of the Student’s
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t-test is approximately twice as high as the SE’s of the MI of unobserved outcomes and
ANCOVA. The SE’s of last two methods do not differ much. These results are consistent
with the simulation studies.

6 Discussion

The goal of this paper was to evaluate MI of unobserved potential outcomes and compare
its performance to two commonly used methods. Simulations show that MI of unobserved
potential outcomes performs up to standards: the bias is very small compared to the SE
and the coverage levels of the 95 per cent CI are above 90 per cent. With a value of
around 92,5 per cent the coverage is however not perfect, since the chance of making a
type I error is about 1.5 times higher than expected.

Compared to the frequently used Student’s t-test, the MI of unobserved outcomes is
indeed more powerful and more efficient when the relation between the covariates and
potential outcomes is linear. Compared to ANCOVA, the novel method performs approx-
imately equally well. When the assumptions of parallel slopes are violated, the power of
the novel method is somewhat higher for small sample size. The differences are however
not substantial and disappear at a sample size of 200. Furthermore, for all covariate
structures the novel method is somewhat less efficient than the classical ANCOVA, since
the RMSE of the novel method is somewhat higher.

The imputation of quadratic relations imposes some extra difficulties (von Hippel,
2009). At least, non-linear relations should be included in the imputation model even
when using PMM.

On the question under which circumstances MI of potential outcomes works best, the
only tested aspect that seems to matter is the amount of correlation between the covariate
and potential outcomes. The performance of the method increases in terms of efficiency
and power when the correlation between the covariate and potential outcomes increases.
When resulting in the same amount of explained variance, it makes little difference how
many covariates are used. The strength of the partial correlation between the potential
outcomes given the covariate has no influence on the outcomes.

This first evaluation of the novel way to obtain the treatment effects in case of a
completely randomized experiment shows positive results. The performance of the method
can possibly be further improved by some fine-tuning. With the current use and data,
there is no gain in efficiency compared to the commonly used ANCOVA. It is once again
proved that when used for completely randomized groups ANCOVA is an efficient and
powerful method despite its negative reputation in some research areas, and is quite
robust to violations of its assumptions (Little, An, Hohanns & Giordani, 2000; Porter
& Raudenbush). For now, the advantage of MI of potential outcomes in comparison to
ANCOVA remains a principal one, for the reason that it makes the existence of both
potential outcomes and the definition of the treatment effect explicit to the user.

The first issue that could use some further improvement is that the imputations of the
unobserved potential outcomes induce too much variance since they are not precise enough
to really outperform ANCOVA for these datasets. A closer inspection at the imputed
datasets confirms this. Not only does the mean estimated treatment effect per simulation
ATE1 vary substantially, also the estimated treatment effect per dataset �ATE1j varies to
a large degree. Because of the uncertainty in estimating ATE, the RMSE increases and the
pooled SE is a lot higher than it could be, making the method less powerful as it possibly
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could be. Second, one could wonder whether the SE’s are slightly underestimated, because
the low coverage is probably caused by too narrow CI’s. Even when mean SE of the novel
method is similar compared to the other methods, coverage is still lower. Because the
value of the estimated ATE fluctuates more using the novel method, the value of the SE
probably needs to be larger than the SE of the ANCOVA to reach good coverage.

To better understand how the slight undercoverage and relatively high RMSE of the
novel method could possibly be improved, a brief additional experiment was performed.
One possibility is that the coverage and RMSE could be improved by using Bayesian linear
regression as imputation method instead of PMM. Since estimated values around a regres-
sion equation are used instead of observed values, the range of imputed values increase
and is less strongly dependent on the outcome values in the sample. A short simulation
study similar to the previous simulations is conducted. The coverage does increase to 96.5
per cent, but RMSE is not influenced by using Bayesian linear regression. Concluding,
using Bayesian linear regression instead of PMM does not solve the problem of not pre-
cise enough imputations. Another option is the use of auxiliary variables. An auxiliary
variable is one which is not part of the intended analysis, but can improve imputation
by providing extra information about the incomplete variables. Since the estimation of
the treatment effect and the imputation of the unobserved potential outcomes are per-
formed in two separate steps, covariates that do not relate to the theoretical model but
do improve imputation can be incorporated. The possibility to use auxiliary variables is
an advantage over ANCOVA.

This paper focusses only on completely randomized groups, but these can be hard to
obtain in practice because of selective drop-out and noncompliance. Also, well-designed
observational studies provide valuable information in addition to randomized controlled
trials (Concato, Shah & Horwitz, 2000). A whole new advantage emerges when applying
MI to non-random groups. Since the treatment effect is obtained at the individual level
and then aggregated to a group effect, it is suggested that the outcome will not be biased
by non-random groups. It will be interesting to further look into these matters.

Another interesting extension to this research is concerning the partial correlation
between the potential outcomes given the covariates. The partial correlation between Yi0

and Yi1 given the covariates is unknown. Although this does not bias the estimation of
the treatment effect (Gelman, Carlin, Stern, & Rubin, 2004, p. 219), it could improve
the uncertainty in estimating the average treatment effect. When the relation between
potential outcomes is introduced to the models used to estimate the potential outcomes.
A possible method to obtain information about the unobserved relation between potential
outcomes could be repeated measurements, like Steyer (2005) proposes. If for example
more pretest measurements are available, it would be possible to predict for a unit placed
in the active treatment group what its outcome would be when it was placed in the control
treatment group. This would also permit the construction of a full joint model, instead of
using fully conditional specification. Predicting the unknown outcome in this way however
does require extra assumptions, in particular the correct extrapolation to the unobserved
treatment outcome.
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A Appendix

A.1 How the empirical synthetic populations are generated

The base synthetic empirical population and the two trimmed empirical synthetic pop-
ulations where the relation of the covariate with the potential outcomes are artificially
altered are created in the following manner.

Base empirical synthetic population The procedure used to create the empirical syn-
thetic population, is similar to how Schafer and Kang (2008) built their population
in order to review different strategies for estimating the average causal effect for non-
random groups. Distributions used to create the synthetic population are estimated
from the SMOCC data, using cases for which at least the dependent variable weight

at 2 months, exclusively breastfeeding (EBF ) on measurement 2 and birthweight are
observed. This leaves 1540 babies in the empirical dataset. With the data on these
1540 babies the empirical synthetic population of 1 million cases large is constructed
as follows.

1. One million values for the possible combinations of the variables sex, ethnicity

and social economic status (SES) are randomly sampled from a discrete mul-
tivariate distribution. To obtain the correct marginal, pairwise relations and
three-way interactions for the variables, the unweighted proportions of the sex

(2) × ethnicity (3) × SES (4) contingency table of the SMOCC dataset are
used as sampling probabilities.

2. The values for the ordinal variable parity are obtained by randomly sampling a
discrete value between 0 and 4, based on the unweighted proportions for each
discrete value of parity. These proportions differ with the values observed for
the previously sampled variables ethnicity and SES. The used proportions are
derived from the contingency table ethnicity (3) × SES (2) of the SMOCC
dataset. The lowest and highest two levels of SES are aggregated and the
covariate sex is not used to avoid a low number of values within the cells.

3. The values for the covariate age of mother are obtained using a regression
model estimated from the SMOCC data which includes the main effects for the
previously obtained covariates in the sequence.

4. To the just simulated values of the covariate an error term with a marginal
distribution similar to that in the SMOCC dataset is added.

5. Step four and five are repeated for subsequently the covariates birthweight, ges-

tational age, height of mother, height of father and age of child on measurement

2.
6. Using the simulated covariates, the active treatment potential outcomes EBF

(Yi1) are obtained using an elaborate regression model estimated from the
SMOCC dataset. All main effects of the covariates are included, plus a quadratic
relation for age of child on measurement 2 and an interaction term for sex ×
birhtweight, sex × gestational age, sex × parents Mediterranean and low SES

× parents Mediterranean. The added quadratic relation and interaction terms
are theory driven, not data driven.
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7. The control treatment potential outcomes no EBF (Yi0) are obtained in similar
fashion as step 6, but with it’s own intercept and slopes estimated from the
SMOCC dataset.

8. To the potential outcomes a correlated random residual is added, which marginal
distribution matches the empirical distribution of the residuals in the SMOCC
data. The residual for the potential outcomes are correlated since it is not
realistic that the covariates account for all observed differences between the
potential outcomes. The correlation between the potential outcomes is set at
an value of .30. This is an educated guess, because the correlation between the
potential outcomes cannot be estimated from the SMOCC dataset.

9. One million values for the treatment indicator are randomly sampled with
Pr(T ) = 0.5, where 1 denotes active treatment and 0 control treatment. For
each case, the value of the treatment indicator indicates which of the potential
outcomes is treated as observed in the dataset.

The simulated covariates are very similar to the covariates in the SMOCC data
regarding the marginal distribution, pairwise relations and most three-way interac-
tions, just as the simulated potential outcomes.

Covariates with unequal slopes for treatment groups To simplify interpretation,
the variance-covariance matrixes are provided in standardized fashion as correlation
matrixes. The standard deviations for the potential outcomes Yi1 and Yi0, birth-

weight, age of child on measurement 2 and sex are similar to the obtained standard
deviations in the base empirical synthetic population: 649.6, 588.3, 506.9, 6.2 and
0.5.
One million sets of observations (Y1 1, Y1 0, birthweight1, age of child on mea−
surement 2 1, sex 1), ..., (Y1000000 1, Y1000000 0, birthweight1000000, age of child on

measurement 2 1000000, sex 1000000) are drawn from

N









5207.9
5046.9
3613.8
58.9
0.5




,





−1 −.30 −.60 −.20 −.10
−.30 −1 −.20 −.60 −.50
−.60 −.20 −1 −.04 −.15
−.20 −.60 −.04 −1 −.04
−.10 −.50 −.15 −.04 −1








.

Each case is assigned a treatment indicator, with Pr(T ) = 0.5.

Covariates have quadratic relation with potential outcomes The distributions used
to create the population are estimated from the base empirical synthetic population
instead of the SMOCC data, in order to obtain the same means and variance-
covariance structure for the quadratic data as the base empirical population.

1. The simulated covariates birthweight and age of child on measurement 2 of the
base empirical synthetic population are centered.

2. Using these centered covariates plus the covariate sex of the base empirical
synthetic population, the active treatment potential outcomes EBF (Yi1) are
obtained using a regression model estimated from the base empirical synthetic
population plus added quadratic term for birthweight and age of child on mea-

surement 2. The slope of the first quadratic term is 0.001, the slope of the
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second quadratic term is 2.5. This results in a strong curvature for birth-

weight and a light curvature for age of child on measurement 2. The intercept
is slightly adjusted to obtain the same mean EBF as in the base empirical
population while including the quadratic terms.

3. The control treatment potential outcomes no EBF (Yi0) are obtained in similar
fashion as step 2, but with it’s own intercept and slopes estimated from the
base empirical synthetic population. The used values for the quadratic slopes
are equal.

4. To the potential outcomes a random residual is added, which are correlated
with ρ = .30. The SE of the marginal distributions of the residuals of the
base empirical population are slightly adjusted to obtain the same SE for the
potential outcomes as in the base empirical population while including the
quadratic terms.

5. Each case is assigned a treatment indicator, with PR(T ) = 0.5.

A.2 How the parametric synthetic populations are generated

All datasets are created by randomly drawing the values of the variables using the R pack-
age ’mvtnorm’ (REF), using the settings specified below. To simplify interpretation, the
variance-covariance matrixes are provided in standardized fashion as correlation matrixes.
In all datasets, the standard deviation of both potential outcomes Yi1 and Yi0 is 2 and the
standard deviation of all covariates Xik is 5. As can be seen below, the only difference
between the datasets is the number of covariates and correlation matrix used. The four
dataset are next denoted in terms of means and correlation matrix used.

Dataset 1 One million sets of observations (Y1 1, Y1 0, X1 1, X1 2, X1 3), ..., (Y1000000 1,
Y1000000 0, X1000000 1, X1000000 2, X1000000 3) are drawn from

N









9
8
25
25
25




,





1 .30 .10 .30 .60
.30 1 .10 .30 .60
.10 .10 1 .30 .30
.30 .30 .30 1 .30
.60 .60 .30 .30 1








.

The resulting partial correlations between the potential outcomes given each of the
covariates are .29, .23 and -.09. Each case is assigned a treatment indicator, with
Pr(T ) = 0.5. In the simulations, one covariate Xk is used at a time.

Dataset 2 One million sets of observations (Y1 1, Y1 0, X1 1, X1 2, X1 3), ..., (Y1000000 1,
Y1000000 0, X1000000 1, X1000000 2, X1000000 3) are drawn from

N









9
8
25
25
25




,





1 .60 .10 .30 .60
.60 1 .10 .30 .60
.10 .10 1 .30 .30
.30 .30 .30 1 .30
.60 .60 .30 .30 1








.

The resulting partial correlations between the potential outcomes given each of the
covariates are .60, .56 and .36. Each case is assigned a treatment indicator, with
Pr(T ) = 0.5. In the simulations, one covariate Xk is used at a time.
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Dataset 3 One million sets of observations (Y1 1, Y1 0, X1 1, X1 2, X1 3, X1 4, X1 5), ...,
(Y1000000 1, Y1000000 0, X1000000 1, X1000000 2, X1000000 3, X1000000 4, X1000000 5) are
drawn from

N









9
8
25
25
25
25
25





,





1 .30 .50 .36 .36 .36 .36
.30 1 .50 .36 .36 .36 .36
.50 .50 1 .30 .30 .30 .30
.36 .36 .30 1 .30 .30 .30
.36 .36 .30 .30 1 .30 .30
.36 .36 .30 .30 .30 1 .30
.36 .36 .30 .30 .30 .30 1









.

The resulting partial correlation between the potential outcomes given all covariates
is -.09. Each case is assigned a treatment indicator, with Pr(T ) = 0.5. All five
covariates are used simultaneously in the simulation.

Dataset 4 One million sets of observations (Y1 1, Y1 0, X1 1, X1 2, X1 3, X1 4, X1 5,
X1 6, X1 7, X1 8, X1 9, X1 10), ..., (Y1000000 1, Y1000000 0, X1000000 1, X1000000 2,
X1000000 3, X1000000 4, X1000000 5, X1000000 6, X1000000 7, X1000000 8, X1000000 9, X1000000 10)
are drawn from

N









9
8
25
25
25
25
25
25
25
25
25
25





,





1 .30 .50 .33 .33 .33 .33 .33 .33 .33 .33 .33
.30 1 .50 .33 .33 .33 .33 .33 .33 .33 .33 .33
.50 .50 1 .30 .30 .30 .30 .30 .30 .30 .30 .30
.33 .33 .30 1 .30 .30 .30 .30 .30 .30 .30 .30
.33 .33 .30 .30 1 .30 .30 .30 .30 .30 .30 .30
.33 .33 .30 .30 .30 1 .30 .30 .30 .30 .30 .30
.33 .33 .30 .30 .30 .30 1 .30 .30 .30 .30 .30
.33 .33 .30 .30 .30 .30 .30 1 .30 .30 .30 .30
.33 .33 .30 .30 .30 .30 .30 .30 1 .30 .30 .30
.33 .33 .30 .30 .30 .30 .30 .30 .30 1 .30 .30
.33 .33 .30 .30 .30 .30 .30 .30 .30 .30 1 .30
.33 .33 .30 .30 .30 .30 .30 .30 .30 .30 .30 1









.

The resulting partial correlation between the potential outcomes given all covariates
is -.09. Each case is assigned a treatment indicator, with Pr(T ) = 0.5. All ten
covariates are used simultaneously in the simulation.
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