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Worm plot to diagnose fit in quantile regression

Stef van Buuren1,2

1 Department of Statistics, TNO Quality of Life, The Netherlands
2 Department of Methodology & Statistics, Faculty of Social Sciences, University of Utrecht,
The Netherlands

Abstract: The worm plot is a series of detrended Q-Q plots, split by covariate levels. The worm plot is
a diagnostic tool for visualizing how well a statistical model fits the data, for finding locations at which
the fit can be improved, and for comparing the fit of different models. This paper shows how the worm
plot can be used in conjunction with quantile regression. No parametric distributional assumptions
are needed to create the worm plot. We fitted both an LMS and a quantile regression model on Dutch
height data. The worm plot shows that the quantile regression model is superior to the LMS model in
terms of fit. At the same time, it also contains a warning that the particular quantile model used may
actually overfit the data. The resulting quantile curves are wiggly at the extremes, and appear less well
suited for drawing growth diagrams. The paper concludes that the worm plot is a natural diagnostic
tool for quantile regression.
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1 Introduction

Quantile regression (QR) (Koenker, 2005; Koenker and Bassett, 1978) provides
a flexible way to describe how a given quantile τ(0 < τ < 1) of an outcome
y changes as a result of one or more covariates x. Various goodness-of-fit tests are
available for the linear quantile regression model, for example, likelihood ratio and
Langrange multiplier tests (Koenker and Machado, 1999). While such tests statistics
are very useful overall aggregates of fit, they typically do not provide much insight
at what points the largest deviations between the data and model occur. Without
such information, it may be difficult to identify the parts of the model that need
improvement.

The worm plot is a diagnostic tool that was developed to steer the model
selection process in fitting age-conditional growth reference curves (van Buuren and
Fredriks, 2001). The tool consists of a number of detrended Q-Q plots (Wilk and
Gnanadesikan, 1968), split according to age. A model that fits the data well is
characterized by ‘flat worms’. The worm plot is sensitive to local deviations of the
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model. Figure 1 is an example of a worm plot for a badly fitting LMS model on
the height of Dutch boys. Locations at which the worms are not flat suggest specific
changes to the model (see Table 1). The worm plot was developed as an adjunct to
the LMS model (Cole, 1988; Cole and Green, 1992), where it was used to guide
the smoothness parameters in the L-, M- and S-curves. Scripts and examples can be
found at the website of this journal and at www.stefvanbuuren.nl.
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Figure 1 Worm plot of the z-scores for height of Dutch boys (LMS model 0051R). The plot consists of detrended
Q-Q plots in 16 age groups of equal size, ordered from the lower-left panel to the upper-right panel. Model 0051R
fits badly in almost all ages
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Table 1 Interpretation of various patterns in the worm plot

Shape Moment If the then the

intercept mean worm passes above the origin, fitted mean is too small.
worm passes below the origin, fitted mean is too large.

slope variance worm has a positive slope, fitted variance is too small.
worm has a negative slope, fitted variance is too large.

parabola skewness worm has a U-shape, fitted distribution is too skew to the left.
worm has an inverted U-shape, fitted distribution is too skew to the right.

S-curve kurtosis worm has an S-shape on the tails of the fitted distribution are too light.
left bent down,

worm has an S-shape on the tails of the fitted distribution are too heavy.
left bent up,

QR and LMS have similar objectives, but differ in methodology. Both approaches
aim to fit smooth quantiles of y by functions that vary smoothly in x. The difference
is that QR is nonparametric and free of distributional assumptions, whereas the
LMS model assumes that y is distributed normally after an age-dependent Box-Cox
transformation. QR is more general and has the potential of identifying features in
the data that might go undetected by the LMS method.

The conventional Q-Q plot portrays how the empirical and theoretical quantiles
differ. Application of the worm plot to QR is non-standard because QR lacks an
underlying distribution from which the theoretical quantiles can be taken. This paper
proposes a distribution-free version of the Q-Q plot that does not require a parametric
distribution. The central idea is as follows: if the quantile model fits the data, then the
distribution of the empirical quantiles must be uniform. The Q-Q plot provides a way
to assess uniformity, and if it holds, then the quantile model provides an adequate
description of the data.

The present paper will explore the use of the worm plot within the context of QR.
The purpose of the worm plot is three-fold:

(a) to investigate how well the model fits the data;
(b) to identify locations at which the fit could be improved;
(c) to compare the fit of quantile models with that of parametric models.

The paper first describes the substantive problem of interest. Subsequently, both the
LMS and the QR model are applied to the data. The worm plot provides a means
to compare the fit of both models. The discussion concludes the paper with some
thoughts about the relative merits of the worm plot, and its role within the context
of QR.

2 Fourth Dutch Growth Study

Cross-sectional data on height, weight and head circumference of Dutch children
between ages 0 and 21years were collected within the Fourth Dutch Growth
Study (Fredriks, van Buuren, Burgmeijer and Meulmeester et al., 2000; Fredriks,
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Figure 2 Length/height (cm) against age (years) for Dutch boys (Fredriks, van Buuren, Burgmeijer and
Meulmeester, 2000)

van Buuren, Wit and Verloove-Vanhorick, 2000). This study is a follow-up to earlier
nation-wide studies performed in 1955, 1965 and 1980. The design was stratified
according to province, municipal size, sex and age in order to arrive at a sample that is
representative of children of Dutch origin. The realized sample size of healthy Dutch
boys without known growing problems was equal to 7482 boys. Proportionally more
children at infancy were sampled so as to have more details in periods of rapid growth.
The primary goal of the study was to update the Dutch 1980 growth references.

Figure 2 is a scatter plot of height versus age. The modeling task consists of
describing this cloud of points by age-conditional quantiles/centiles or, alternatively,
by age-conditional z-scores. The use of z-scores is popular in growth because that
scale is capable of displaying differences in the extremes of the distribution, and
because z is linear in y under normality.

For clinical applications, the extremes of the growth chart are the most relevant
area. Screening procedures may set criteria for referral as low as −3 SD (van Buuren
et al., 2004).

3 LMS model

Suppose a measurement yi and one or more covariates xi are available for a sample
of n persons. A classic assumption in human growth is that y is normally distributed
given x. Let µ (x) and σ (x) respectively denote the mean and standard deviation of
y at different levels of x. The quantile function of y for 0 < τ < 1 can then be written
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as Q(τ |x) = µ(x) + σ(x)�−1(τ ), where �−1 is the inverse of the standard normal
distribution function. If normality holds, then a proportion τ of the sample will lie
below the curve Q(τ |x), whereas a proportion of 1 − τ is located above the curve.

The simple normal quantile model may fail to fit the data for two reasons. First, if
µ̂(x) and σ̂ (x) are biased estimates of µ(x) and σ(x) at some x, then Q(τ |x) may not
split the sample at proportions τ and 1−τ at this x. Bias in µ(x) and σ(x) could easily
arise because one would generally want these functions to be smooth in x. Second, the
normal distribution may be a poor approximation of the empirical data at some x,
which could also result in a failure to split the sample into proportions τ and 1 − τ .
This can occur if y is skewed, for example, for body weight or body mass index.

The development of the LMS model was motivated by the need to model skewed
distributions. The LMS model writes the quantile function as

Q(τ |x) = µ(x)(1 + λ(x)σ (x)�−1(τ ))1/λ(x), (3.1)

where µ(x), σ(x) and λ(x) can be interpreted as curves of the median, coefficient of
variation and Box-Cox power parameter, respectively, each varying smoothly in x.
The measurements can be expressed as

zi = (yi/µ(xi))
λ(xi) − 1

λ(xi)σ (xi)
, i = 1, . . . , n. (3.2)

For a well-fitting model, we expect zi ∼ N(0, 1) for all x in the reference sample,
that is, the sample from which µ(x), σ(x) and λ(x) are estimated. In practice, the
fit can be reduced due to excessive mass (clumping) of values in some region of the
distribution, for example, by rounding to whole centimeters. As the transformation
approach assumes smoothness and continuity of density, it may fail to pick up such
violations in empirical data.

The worm plot is a diagnostic check whether the normality holds for a given LMS
solution. More in particular, the primary modeling task in the LMS model is to specify
the degrees of freedom Eµ, Eσ and Eλ for the fitted curves µ̂(x), σ̂ (x) and λ̂(x).
Choosing only a few degrees of freedom provides very smooth reference curves,
but these curves may fail to faithfully represent the true pattern across x. On the
other hand, specifying a high value puts great fidelity on the data at the expense of
smoothness. The worm plot is a sensitive tool that enables the user to decide on the
number of degrees of freedom. Basically, the user increases the degrees of freedom
Eµ, Eσ or Eλ, and elects the solution above which the worm plot does not further
improve.

Figure 3 shows the worm plot resulting from the final LMS model applied to
the height data of the Dutch boys, and where x was defined as age of the child.
The solution sets Eµ = 10, Eσ = 6 and Eλ = 0. Increasing Eµ, Eσ or Eλ did not
appreciably improve the worm plot. All worms are relatively flat, and the worm plot
indicates that the LMS model fits the data quite well.

Statistical Modelling 2007; 7(4): 363--376



‘‘buuren’’ --- 2007/12/3 --- page 368 --- #6

368 S van Buuren

–0.4

–0.2

0.0

0.2

0.4

–2 0 2 –2 0 2

–0.4

–0.2

0.0

–0.4

–0.2

0.0

0.2

0.4

0.2

0.4

Unit Normal Quantile

 0.0– 0.2  0.2– 0.7  0.7– 1.2  1.2– 1.9

–2 0 2

–0.4

–0.2

0.0

0.2

0.4

n
oit

aiv
e

D

 1.9– 2.9  2.9– 5.4  5.4– 9.1  9.1–10.4

10.4–11.7 11.7–13.0 13.0–14.0 14.0–15.1

15.1–16.3 16.3–17.6 17.6–18.9 18.9–21.7

Figure 3 Worm plot for length/height of Dutch boys for the final LMS model 0106R. The model fits well and
was used to draw the Dutch reference diagram

The LMS model is restricted to modeling variation in location, shape and
skewness. This means that the model may potentially miss features in the data, for
example, kurtosis, that cannot be modeled by the Box-Cox power transformation.
One approach is to extend the parametric family to include other shapes. This route
was followed by Rigby and Stasinopolous, whose implementation of the Generalized
Additive Models for Location, Scale and Shape (GAMLSS) method is a flexible and
general generalization of LMS (Rigby and Stasinopolous, 2005).
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4 Quantile regression

Quantile regression is an alternative approach that abandons any parametric
assumptions. The QR model can be formulated as follows: suppose that we minimize
the function

σ(β) =
n∑

i=1

ρτ (yi − β) (4.1)

over the scalar β, where ρτ (u) = (τ − I (u < 0)) is the ‘check function’. The optimal
solution β̂ is equal to the τ th sample quantile of y = {y1, . . . , yn}, so β̂ = F−1

y (τ ).
Koenker and Bassett (1978) extended this optimization interpretation of ordinary

sample quantiles to linear parametric models for conditional quantile functions. QR
replaces β by a linear function of the covariates x as

σ(β) =
n∑

i=1

ρτ (yi − x′
iβ), (4.2)

where β is a vector of p elements. The estimate x′
i β̂ can be interpreted as the τ th

sample quantile conditional function of y given x.

5 Worm plot for quantile regression

In section 3, we distinguished between two possible reasons for lack-of-fit in the LMS
model: bias in the estimates of µ(x), σ(x) and λ(x) due to smoothness requirements,
and misspecification of the family of conditional distribution. QR is more general
than LMS in the sense that it does not require specification of the (age-) conditional
distribution. Thus, misspecification of the distribution does not present a problem in
QR. Bias can still occur, though, if the component x′

iβ misspecified. The worm plot
provides a way to diagnose this problem.

The rationale of the worm plot applied to QR is as follows. In the simple univariate
model (4.1), the best estimate β̂ is equal to the τ th sample quantile of y. Plotting Fy(β̂)

against τ (that is, the probability-probability plot) or plotting β̂ against F−1
y (τ ) (that

is, the quantile-quantile plot) reveals that the points will be on the line of identity. For
the more general model (4.2) these plots are not informative, but instead we may plot
Fy(x

′
i β̂) against τ |xi , or alternatively, x′

i β̂ against F−1
y|x (τ |xi), the theoretical quantile

at covariate level xi . As above, one would expect that all points (x′
i β̂, F−1

y|x (τ |xi)) are
located on the line of identity. Or, put in other words, if the model fits the data we
expect that Fy(x

′
i β̂) has a uniform distribution at each level of xi . In practice this may

Statistical Modelling 2007; 7(4): 363--376
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not be true for some xi as β̂ is a global estimate that need not be optimal at each
local xi .

Figure 4 shows an example where this occurs. Figure 4(a) portrays a highly
nonlinear relation between x and y, inappropriately modeled by a linear QR for
τ = 0.50. The regression line divides the sample globally into two halves, but there is
gross lack-of-fit in the middle and the extreme regions of x. Figure 4(b) is a detrended
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Figure 4 Demonstration that Q-Q plot is not informative for conditional models. Figure(a) is a nonlinear
relation modeled by an inappropriate linear quantile model (τ = 0.5). The regression line divides the sample
into two halves, but there is clear misfit in the middle and the extreme regions of x. Figure(b), the detrended
unconditional Q-Q plot, does not indicate any misfit. Figure(c), the conditional Q-Q plot (or worm plot) is sensitive
to this type of misfit
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Q-Q plot, which wrongly conveys the message that everything is OK. The worm
plot (Figure 4(c)) conditions on x, and tells a very different story. The worm plot
easily identifies lack-of-fit, and is sensitive to model deviations at the level of the
covariates x. Where the conventional Q-Q plot diagnoses fit to the constant model
(4.1), the worm plot is the natural companion of the QR model (4.2). Note that
the strong nonlinearity in Figure 4 will also show up in a conventional diagnostic
graph of the residuals against age. Plotting such diagnostic graphs is useful to detect
deviations in the mean structure of the model and the data. However, such plots are
generally less informative than the worm plot about any lack-of-fit in the variance,
skewness and kurtosis of the residuals.

It is straightforward to calculate the points needed to construct the worm plot.
First, k regression quantile models are fitted to xi using various τ . We used the grid
τ ∈ {0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.98, 0.99, 0.991, . . . , 0.999} with k = 117
elements. Inclusion of extreme τ centiles allows calculation of Fy(x

′
i β̂) for values in

the tails. Note that this requires a relatively large sample size. For smaller samples, one
could truncate the extremes to, say, 0.01–0.99 at the expense of loss of discrimination
beyond the truncation point. As a second step, the corresponding reference table is
calculated, which stores the distribution of y at selected x-values in terms of the
k quantiles. The quantiles at these x-values can be easily calculated by prediction.
The choice of x-values in the reference table will normally depend on the problem
at hand, and the spacing should be fine enough to allow for essentially unbiased
linear interpolation between the x-values. Third, for each data point (yi , xi) the
empirical probability Fy(x

′
i β̂) is calculated from the reference table by double linear

interpolation (first over x, then over k). Fourth, both scales in the Q-Q plot are
transformed, without loss of generality, towards the z-score scale. The worm plot
can then be drawn using the points (�−1(τ ), �−1(Fy(x

′
i β̂)) − �−1(τ )) conditional

on x. The minimum and maximum values on the horizontal axis are equal to
�−1(0.001) = −3.09 and �−1(0.999) = 3.09. Note that this step may be bypassed
to produce a P-P plot, which retains the quantile scale. The P-P plot is generally
more sensitive to differences in the center of the distribution, and less suited to detect
differences in the extremes (Wilk and Gnanadesikan, 1968).

6 Application

Wei et al. suggest applying (4.2) to calculate references curves of height (Wei et al.,
2006). These authors propose modeling the nonlinear relation between age (x) and
height (y) by replacing x by a cubic B-splines basis, where the interior knots are
located at {0.2, 0.5, 1.0, 1.5, 2.0, 5.0, 8.0, 10.0, 11.5, 13.0, 14.5, 16.0}. Spacing of the
knots was chosen for more flexibility during infancy and in the pubertal growth spurt
period. Application of B-splines reduces the nonlinear relation to a linear problem.
Calculation of the solution is straightforward.

Statistical Modelling 2007; 7(4): 363--376
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Figure 5 is the worm plot of the QR model. The worm plot indicates an extremely
good fit between the model and the data. All worms are very flat, perhaps with the
exception of the age range 1.9 to 2.9 years, where the upper empirical quantiles
are above the theoretical quantiles. It is possible to improve upon this aspect of the
solution by including an extra knot at the age of 3 years. Compared to Figure 3,
the fit to the data of the B-spline model is clearly superior to the LMS method. The
QR model thus provides very accurate description of the quantiles in the reference
sample.
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Figure 5 Worm plot of the quantile regression model of Wei et al. (2006) that codes age into a B-splines bases
with 15 internal knots. The fit of this model to the data is extremely good
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Figure 6 References diagrams under the LMS model of Cole and Green (1992) and the quantile regression
model of Wei et al. (2006)

The other side of the coin is that the resulting reference curves of the QR model
look quite wiggly. Figure 6 is a side-by-side plot of the reference curves under the
LMS and QR models for the standard quantiles published on the Dutch reference
curves. The discrepancies between both models grow for the more extreme reference
curves, even with a large sample size (n = 7482). In the QR model, the smoothness
of the reference curves is related to τ , with the smoothest curve occurring at τ = 0.5.

The quantile model can be molded arbitrarily close to the data by taking a more
liberal B-spline basis. Though this property is attractive for data description, the
resulting model may actually be too good to be true. More specifically, if a new
sample of the same size was collected, it is quite likely that the reference curves will
look different. A sign that this occurs here can be found in the worm plot. Less than
1% of the points fall outside the 95% confidence intervals, where we expect 5% under
the true model. It thus appears that this particular QR model is partly fitting random
noise due to sampling in the data. Observe that this conclusion pertains to the data at
hand and to the model with interior knots as proposed by Wei et al. (2006). It is well
possible that fitting more restrictive models to these data could provide a solution
that is less dependent on sampling fluctuations.

7 Conclusion

The worm plot is a natural companion to QR. It allows the user to investigate
how well the model fits the data, to identify locations at which the fit could be
improved, and to compare the fit of quantile models with that of parametric models.
The worm plot is easy to calculate, and requires no more than routines for QR, linear
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interpolation and plotting. No parametric distributional assumptions are needed to
create the worm plot.

We demonstrated the worm plot to compare two fitting models for reference
curves, the LMS and the QR method. Both are similar approaches to construct
reference curves. The main difference is that the LMS assumes, for each level of x,
that y follows a distribution. The worm plot showed that the QR model gives a
much better fit to the Dutch height data than the LMS model. The worm plot also
suggests, however, that the particular QR model as fitted here is perhaps ‘too good to
be true’. Note that overfitting can also occur with the LMS model (for example, by
substantially increasing the degrees of freedom), and would manifest itself in a similar
way through the worm plot. In either case, a more restrictive model is needed to avoid
sampling fluctuations.

Several authors have suggested the QR model as a method to fit reference curves
(Gannoun et al., 2002; He, 1997; Heagerty and Pepe, 1999; Kapitula and Bedrick,
2005; Wei et al., 2006). The QR model does not assume a distribution, and is more
general than the LMS model. QR is rapidly entering mainstream statistics, and the
theoretical properties are well studied. QR is easily applied to multivariate predictors,
and constraints can be applied to the coefficients. The number of implementations in
statistical software is growing.

However, using QR for reference curves is not without drawbacks. The QR model
lacks an explicit formula that allows one to convert a measurement into quantile or
z-score. The availability of such a formula was one of the requirements set forth by
a World Health Organization expert committee (Borghi et al., 2006). The QR model
also does not allow for estimating a quantile or z-score beyond the most extreme
tabled quantiles. Such extrapolations beyond the data are desirable for tracking
children with extreme growth. The reference curves produced by the quantile model
are irregular near the extremes, and are generally less aesthetically pleasing. We may
prevent wiggly curves by including an extra smoothing step over the joint quantiles,
as in the model of Healy, Rasbash and Yang (1988). An alternative is to vary the
amount of smoothing depending on τ . This takes out the irregularity of the extreme
quantiles, but the method is still capable of detecting gross changes in the conditional
quantile function. Some have pointed that QR has the potential of generating quantile
curves that cross, which creates a problem in the interpretation. Solutions for this
have been developed (He, 1997), but no such solutions were needed here. In the
present application, no problems showed up with quantiles that crossed.

Although the QR model gives a much better fit to the data, the LMS model
seems preferable for the purpose of constructing growth diagrams. Use of the LMS
model implies an assumption that the natural phenomena and the observation process
should provide smooth distributions that extrapolate beyond the data. Under this
assumption, the LMS model is a parsimonious description of the real world, provides
stable estimates of extreme conditional quantiles, and comes with a simple formula
for calculating z-scores. The case may be different for outcomes other than height
(for which normality is well established), though the LMS model has been proven
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versatile for many outcomes. The worm plot will help in revealing the outcomes for
which the LMS model does not fit, and where a more general model like GAMLSS
or QR is called for.

The QR model could have a great future as a diagnostic tool for checking
parametric models. Quantile functions may guide model choices in parametric models
for location, shape, skewness and kurtosis. Plotting quantile functions on top of
parametrically-fitted functions will suggest locations where the parametric model cuts
too many corners, and where a more general parametric model is needed. The real
strength of QR is that it reveals points at which distributional assumptions go astray.
The worm plot and regression quantiles are different, but intimately related, tools
that will point in the same direction. Both will find stable features in that data which
may otherwise go undetected. Regression quantiles are useful to visualize deviations
between (smoothed) empirical and modeled probabilities, whereas the worm plot
suggests where adjustments in the parametric model can be made. The combined
use of QR and the worm plot will open up a way for a new set of tools for model
exploration.
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