
dlultivariate Behavioral Research, 27 (4), 567-583 
Copyright O 1992, Lawrence Erlbaum Associates, Inc. 

Equality Constraints in Multiple Correspondence Analysis 

Stef van Buuren 
TNO Institute of Preventive Health Care, Leiden 

Jan de Leeuw 
University of California, Los Angeles 

The application of eqiuality constraints on the categories of a variable is a simple but useful 
extension of multiple correspondence analysis. Equality can be used to incorporate prior 
knowledge about the relations between categories. Categories may belong to the same 
variable, to different variables, or both. The simplest form of equality specifies that all 
variables receive identical data transforms. This is useful, for example, if the same variable 
is measured on many p i n t s  of time. This article outlines a procedure to deal with unequal 
category numbers and with subsets of variables. Though the technical results are not difficult 
to derive, they are not very well-known. Some applications illustrate the method. 

Multiple correspondence analysis (MCA) is a popular technique for 
analyzing multivariate categorical data. Standard references are BenzCcri 
(1973), Nishisato (1980), Lebart, Morineau and Warwick (1984), Greenacre 
(1984) and Gifi (1990). This article deals mainly with homogeneity analysis, 
a form of MCA popularized by Gifi, but the main results can be easily 
translated into other incarnations of the technique. 

MCA is usually applied to reveal systematic patterns among the categories 
of the variables of interest. In conventional MCA the category quantifications 
are usually not restricted, possibly except for normalization. In practice 
however, we may know in advance that categories are related in some way. For 
example, for ordinal measurements we know the order of the categories. If we 
wish to preserve this order we may require that the category quantifications are 
a monotone function of the category numbers. This restriction is defined 
within the same variable, so we call it a within-variable constraint. 

Another useful possibility is to impose constraints across variables. For 
example, the 0VERAT.S technique for polyset canonical analysis can be 
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viewed as a constrained form of homogeneity analysis in which the categories 
that belong to one set of variables should conform to a specific summation 
pattern (cf. Gifi, 1990, p. 205). In this article we study another across-variable 
restriction, the equality constraint. Equality is both conceptually and 
computationally quite simple. The type of equality we study stipulates that 
different categories should receive identical quantifications. Categories may 
belong to the same variable or to different variables. 

Why do we need equality? In general, equality can be helpful if variables 
are supposed to be measured on the same scale, that is, if the interpretation of 
their categories is identical. This is often the case if variables are comparable 
in some sense. An obvious example is if we have scores on the same variable 
at different points of time, as in event history data. Here it makes sense to fix 
the scaling across all occasions. Another example emerges if avariable appears 
more than once in the analysis but with its rows permuted in some way. This 
frequently occurs in time series analysis where the values on a variable are 
shifted one or more positions and the dependencies between the resulting 
lagged variables are studied. 

Ranking data give rise to another class of applications. Suppose that 50 
psychometricians rank 10 journals on, say, readability. We thus obtain 50 
readability variables on 10 objects. It would be interesting to derive a 
consensus ranking as well as to gain insight into the most typical deviations. 
Because the variables are replications of each other we may assume the 
existence of an underlying common scale. An obvious way to implement such 
a common scale assumption is to restrict the quantifications per rank to be the 
same for all psychometricians. And this is nothing more than requiring 
equality. 

Last but not least, equality provides ameans to avoid degenerate, redundant 
and uninteresting solutions. For instance, heterogeneity of missing data may 
have a profound impact on the solution because homogeneity analysis often 
places rare categories near the border. The resulting configuration is usually 
not very appealing. One way to alleviate the trouble is to require equality of 
all missing categories, assuming that these have something in common across 
variables. Likewise if we are not interested in certain source of heterogeneity, 
say differences between all "don't know" answers, we may treat them as equal. 
The stability of the solution thereby enhances and the graphs simplify. 
Equality constraints can be used to incorporate prior knowledge (of the kind 
described above) into the analysis. A desirable consequence of this feature is 
that less parameters are needed and hence solutions will be more stable under 
arbitrary deletion of variables, categories or observations. 

Some of the ideas presented here have been proposed before. De Leeuw 
(1973, pp. 50,160) applies constrained homogeneity analysis to sorting data. 
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Deville and Saporta (1980), Saporta (1981), de Leeuw, van der 1Heijdr:n and 
Kreft (1985) and van der Heijden (1987) use equality restrictions in the 
analysis of several types of longitudinal data in which each variable represents 
a time point. Van Buuren (1990) codes time points in the rows and applies 
equality to different lags of the same variable. Gifi (1990, p. 332) relates 
equality to the method of successive intervals, a classic scaling technique 
proposed by Guilford (1954), and shows how the singular value decomposition 
(SVD) can be applied if we want equality of complete variables. This article 
proposes an extension to the Gifi system that allows for equality of individual 
categories, which is more general and which is also more useful. An additional 
advantage of the method is that, compared to SVD, it is much easier to impose 
further rank- or order restrictions on the solution. See de Leeuw and van 
Rijckevorsel(1988) for a detailed description of methods that deal with these 
types of constraints. 

This article is organized as follows: the Method section describes how 
equality can be specified in terms of homogeneity analysis and presents two 
methods to compute the constrained solution. Next, applications ar~e discussed. 
Ranking Data deals with the most elementary case of complete equality among 
all variables. The example of Missing Data focuses on equality for one specific 
category, and Event History Data shows how equality can be applied within 
subsets of variables. The Conclusion summarizes the main results and deals 
with some practical issues. 

Method 

Using the notation of Gifi (1990), suppose that n observations on m 
categorical variables, each with 3 categories, are coded into indicator matrices 
Gj (j = 1, ..., m) of arder n x kj. Let Yj denote a $ x p  matrix ofp-dimensional 
category quantifications and let X be an n x p matrix of object scores. 
Homogeneity analysis can then be formulated as minimizing 

m 

(1) u(X; Y,, ..., Ym) =m-' 2 SSQ (X- GjYj) 
j=l 

over X and Y,, ..., Wm. We write SSQ(.) for tr(.)'(.). Equation 1 is known as 
the HOMALS loss function. Minimization procedures and theoretical properties 
are thoroughly discussed in Gifi (1990, p. 105). The normalization constraints 
1'X = 0 and X'X = nI prevent degenerate and trivial solutions. 

The simplest form of equality is to require Y = Yj for all j = 1, ..., m which 
indicates a one-to-one correspondence between the categories of all variables. 
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Note that this will only work if all variables possess an equal number of 
categories. It will be clear that this condition is often too restrictive in practice. 
A more flexible method, which allows for equality on a category level, is to 
constrain the solution by Yj = SjY for all j, where Sj is a known kj x k indicator 
matrix that links the individual categories to the levels of a common k x p 
quantification matrix Y. A typical use of this more liberal form of equality is 
the construction of common "not applicable" or "missing" categories. It is also 
possible to require that categories within a variable should receive identical 
scale values, or to require that some categories do not enter the analysis at all 
by coding the entire row to zero. Also, equality in subsets of variables can be 
specified quite easily. 

To see how Equation 1 can be minimized under Yj = SjY let us define some 
auxiliary matrices. Let D. = GiGj be the diagonal matrix of marginal 
frequencies, let D = S S ~ D ~ ~  denote a k x k diagonal matrix containing the 

'G 'X be the usual number of observations per common category and let Tj = D; 
unrestricted update of category points. Then E = z j S ; ~ F j  is the k x p matrix 
that sums these intermediate quantifications into the common category system 
so that* = D-lE contains the corresponding centroids. Now Equation 1 may 
be partitioned as 

m m 

(2) mo(X;  Y,, ..., Ym) = ZSSQ(X - G F ~ )  + 2 ssQDjflj - SF) + S S Q ~ ~ ~  - Y) 
j= 1 j=1 

where SSQD(.) = tr(.)'D(.). ~ o t h  vj and P are least squares estimators so the 
remaining problem is to minimize SSQ~@ - Y). If Y is not restricted any 
further then the solution is found by setting Y =E. In other cases, the last term 
must be minimized over any additional constraints, like rank or order restrictions. 
The steps for X can be found in Gifi (1990). 

It is well known that the minimum of Equation 1 can also be obtained by 
performing correspondence analysis on the super-indicator G = [GI, . . ., Gj, . . . , 
G,]. One of the referees pointed out that it is also possible to create equality 
by replacing the relevant columns by their sum, followed by a CA on this 
condensed matrix. This result may be derived from the so-called "principle of 
distributional equivalence" (BenzCcri, 1973; Greenacre, 1984, pp. 65,95). The 
principle postulates that proportional profiles may be supplanted by their sum 
without affecting the analysis in any way. Conversely, and this appears to be 
less well-known, if we want equal scores, we only have to add the columns. So 
if S = [S,', ..., S,', ..., Sm1]' and if G = GS is the condensed matrix, then the 
constrained solution is  equal to the nontrivial components of 
X = d n ~ - ~ / ~ ~ h - l  and Y = D ~ ~ ' x  where D = d i a g ~ ? ;  and where W and A derive 
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from the eigenvector/value decomposition ~~-'"G'GD-"~ = WA2W'. This 
procedure generalizes equation (10.3) of Gifi (1990) to individual categories. 
Summation of indicator columns has probably been practiced for ylears in 
France, but the fact that it is equivalent to MCA under equality constraints is 
not mentioned in any of the standard references. 

The number of different solutions will decrease under equality. The total 
number of solutions in the unrestricted solution is equal to Zj (kl c 1). Suppose 
we impose equality constraints on s variables, each having k categories, then 
the maximum dimensionality diminishes by a factor of (s + l)(k -t. 1). If s = m 
(i.e., if all variables are restricted), the number of independent sol~tionsi is just 
k -  1. 

Note that minimizing Equation 2 induces variables G Y. that are not 
J . J  

necessarily in deviations from their means. It is not possible to require 
lfDjYj = 0 for all j simultaneously because the marginal frequencies DJ may be 
unequal for different j. Because 1'X = 0, it will still be true that 1'DY = 0 (i.e., 
the grand average over all variables is zero), which is entirely in the tradition 
of correspondence analysis. In some applications, for example if we analyze 
ranking data or lagged variables, differences in marginal frequencies are 
negligible so the means of the induced variables then will be approxi~nately 
zero. 

Ranking Data 

The analysis of ranking data is a straightforward application of equality. 
Ranking data are very common: athletes can be ranked from fast to slow, 
events can be ranked from most to least likely, universities can be ranked from 
most to least prestigious, stocks and shares can be ranked from ltrlost to least 
profitable, cities can be ranked from most to least rainy, and so on. Ps ychol~ogical 
research is often concerned with preference rankings that order items like 
foods, beverages, o~dors, people, and political parties from the least to the most 
preferred. If rankings are replicated over time or individuals we can use 
homogeneity analysis with equality constraints to determine one or more 
common latent ranking vectors. 

To see how MCA applies, suppose that m individuals rank n objects and 
that these data are collected into an n x m matrix. Each variable corresponds 
to a particular ranking and consists of n categories. Categories are coded by 
the first n integers, with the highest preference being coded as "1". Ideally, 
homogeneity analysis on these data should produce a joint plot of objects and 
individuals in which individuals are located nearby their favorite objects. 
However, performing an unrestricted analysis is not appropriate, because: each 
category is observed only once so that it is possible to obtain ;a perfectly 
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homogeneous solution yj = Gix for any centered, but otherwise arbitrary n- 
vector x. To avoid this degeneracy we may impose an equality restriction: the 
ranking scale is considered to be the same for every judge. Thus all m first 
choices are located at the same spot, all m second choices are located at the same 
spot and so on. If there is much agreement among the judges the objects can 
be scaled on a single line; if not, more dimensions will be needed to describe 
the data adequately. The common scale assumption is appropriate if the 
discrepancies between the consensus ranking and the individual preferences 
are small. Homogeneity analysis aims to find the consensus ranking that 
minimizes these differences. 

We analyzed a set of odor preference data collected by Moncrieff (1966, 
pp. 124-129). The subjects are 36 males and 66 females between 20 and 40 
years of age. Table 1 contains the data, summed over the 102 individuals. 

The task of each judge was to order 10 bottles of odors from the most to 
the least preferred. Some odors were pleasant, some of them were not. The 10 
odors were: 

1. Strawberry, excellent flavoring essence, high proportion of natural 
material. 

2. Spearmint, excellent oil with a fine characteristics note. 
3. French lavender, oil with high ester contents, a little fruity. 
4. Musk lactone, synthetic, powerful smell, closely related to muscone. 
5. Vanillin, synthetic, chemically identical to the odorant of the vanilla 

pod. 

Table 1 
Rank- r r F 1 

Odor Rank 

Strawberry 
Spearmint 
Lavender 
Musk 
Vanillin 
Neroli 
Almond 
Naphthalene 
Rape oil 
Chlorophyll 
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6. Neroli oil, natural, highly priced, bright note with a "dazzling" smell. 
7. Almond, flavoring essence, a very fine flavor. 
8. Naphthalene, chemical, reminiscent of moth-balls and antique fire- 

lighters. 
9. Rape oil, nutty and oily odor. 
10. Oil-solulble chlorophyll, strong and unpleasant. 
The restricted analysis amounts to performing correspondence analysis on 

the sum of all pennutation matrices Gj, which is exactly what is shown in  Table 
1. A row in this table lists how many times the odor was ranke:d as first, as 
second, and so on. Hence all rows sum to 102. The first three eigenvalues for 
the restricted solution are 0.472,0.110 and 0.034, so the first two dimensions 
capture most common information. The joint plot of odors and preferences is 
given in Figure 1. 

chlorophyll 

\ 

Figure 1 
Joint plot of  10 odors and 10 rank points. 
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The distance between a pair of odors portrays the difference between their 
rank profiles that are given by the rows of Table 1. If two profiles are very 
dissimilar, for example, strawberry and chlorophyll, then their distance will be 
large. Distances between odor points thus reflect differences in their average 
ranking. The scale on which these differences are measured is defined by the 
set of rank points, which are equal to the restricted category quantifications. 
Rank points are located in the centroid of all odors that score on that rank, 
weighted by their frequency. Because the scores of all human raters consist of 
the same ten ranks the subject points coincide at the centre of the rank points, 
which is also the origin. It is therefore not possible to study differences 
between raters in this configuration. 

The distance between two rank points may be interpreted as a measure of 
the average psychological difference between those ranks. In the example, the 
lower rank numbers, corresponding to a larger preference, are placed closely 
together. This indicates that although there certainly are perceptional differences 
between pleasant stimuli, these are not very large. On the other hand, the rank 
scores 8 ,9  and 10 tend to be very distinct, not only from the lower rank scores, 
but also from one another. We interpret this finding, at least in the sample of 
odors studied here, that the pleasant odors are difficult to distinguish from each 
other but can be very well distinguished from unpleasant ones. At the same 
time, unpleasant scents themselves are also easy to separate. Apparently, 
nature has equipped us with an instrument that easily recognizes hazardous 
smells. Delicate odors have subtle distinctions. They are often confusing. 

Missing Data 

The occurrence of missing data is an important empirical problem. 
Homogeneity analysis allows for several strategies to deal with missing data, 
grossly subdivided into deletion and imputation (cf. Gifi, 1990, p. 73; van 
Buuren & van Rijckevorsel, 1992). It is sometimes imperative to distinguish 
between several types of missing data; we may have a separate category for 
"unanswered," one for "not reached, "one for "does not apply," one for "don't 
know," and so on. Unfortunately, it is not unusual to find that these categories 
dominate the MCA solution. One only needs three or four variables that have 
some common missing data, and chances are large that their category points 
will be located towards the periphery. Fortunately, this type of degeneracy can 
be avoided a great deal by restricting such missing categories to receive equal 
scale values. Of course, the restriction only makes sense if the constrained 
categories are comparable in some way. 

As an example consider the small artificial data set in Table 2. Scale values 
and object scores are given in the same table. The first three eigenvalues of the 
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Table 2 
Data and R e s d  for an Artificial Missing Data Example 

Dimension 

Data Object Scores 

Unrestricted Restricted 

Var Cat - -  
1 1  

2 
3 

Category Quantifications 

Note. The restricted solution requires that category 3 (= missing) receives identical 
quantifications. 

MULTIVARIATE BEHAVIORAL RESEARCH 575 



S. van Buuren and J. de Leeuw 

solution are 0.606,0.426 and 0.320. Suppose that missingvalues are indicated 
by "3"s. These missing categories dominate both the first and the second 
dimension. This can most easily be seen from the quantifications which are 
large in dimensions 1 and 2. As a result, these most important axes hardly 
contain information on the actually observed, non-missing data. 

If we require equality of category 3 across all variables then the missing 
categories obtain only one score instead of five. The effect on the solution is 
substantial. The first three eigenvalues are now 0.533, 0.321 and 0.272. 
Dimension 1 stays more or less the same (unrestricted and restricted object 
scores correlate 0.89), however the influence of missing data onto the second 
dimension reduces considerably. Dimension 2 of the unrestricted solution 
actually ceases to exist, whereas the new dimension 2 is almost equal to the 
former dimension 3 (their correlation is 0.90). It thus appears that equality 
suppresses the largely irrelevant previous dimension 2. 

Event History Data 

The last illustration applies equality to subsets of variables. We analyze 
the set of event history data given in Table 3 under three options: without 
equality, with equality on subsets and with equality on all variables 
simultaneously. 

Table 3 contains data taken on 25 babies from Shirley (1931, Appendix 8). 
The data indicate the age in weeks of the babies when they started, respectively, 
stepping, standing, walking with help, and walking alone. Question marks 
indicate missing data. If there is a question mark in the first column this means 
that the babies were already stepping when the observation started. Max and 
Martin, who have a question mark in the second column, skipped standing and 
went directly from stepping to walking with help. Doris has a question mark 
in the last column, because she died before she could walk alone. 

Table 4 codes the data by using 71 successive weeks covering the whole 
observation period. In each week the babies are in one of five states. State one 
is notyet stepping, state two is stepping, state three isstanding, four is walking 
with help, five is walking alone, and zero is missing. We first analyzed the table 
with homogeneity analysis with "missing data deleted" (Gifi, 1990). We 
excluded Doris from the analysis. The first three eigenvalues of this analysis 
are 0.441,0.361 and 0.246. 

The five possible states correspond to five category quantifications. 
However most of these are zero at a given time point because usually only two 
or three states will be actually recorded. Figure 2 contains the first dimension 
of the quantifications for all variables plotted against time. To improve the 
display, zeroes were left out. 
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Table 3 
walk in^ Data fo~: 21 Babies 

Infants Weeks 

Martin 
Carol 
Max 
Virginia 
Sibyl 
David 
James 
Harvey 
Winifred 
Quentin 
Maurice 
Judy 
Irene May 
Peter 
Walley 
Fred 
Donovan 
Patricia 
Tore y 
Larry 
Doris 

The irregularity at the beginning of the stepping curve is easily explained. 
Larry was a slow walker, in fact the last baby to walk alone. But at the same 
time he was the first to go into the stepping phase. Thus the stepping curve at 
13 weeks of age is determined only by Larry, and is this equal to his object 
score, which is 1.75. The large platform in the standing curve is the work of 
Torey. After54 weeks Larry and Walley started to walk with help, leaving only 
Torey in the standing state. He remained there for another 18 weeks as the only 
baby, which is exactly the length of the platform. The height of the platform 
is 2.84, which is Torey's object score. There is also another small irregularity 
in the standing curve at the beginning. This is also due to Torey. Pn weeks 19 
and 20 Carol was the only one standing. She is a very quick walker, and has 
the low object score -1.08. In week 21 Carol was joined by Virginia Ruth, 
another quick walker with score -0.71, and by Torey (of all babies) who was 
quite quick to stand, but continued in the standing state for about a year. His 
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Table 4 
Data of Table 3 Recorded as Stage Der Week. Weeks 9 -79 

- 

Martin 
Carol 
Max 
Virginia 
Sibyl  
David 
James 
Harvey 
Winif red 
Quentin 
Maurice 
Judy 
Irene May 
Peter 
Walley 
Fred 
Donovan 
Patr ic ia  
Torey 
Larry 
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standlng 

help 

Figure 2 
Quantifications plotted against time, unrestricted homogeneity analysis. 

object score 2.84 causes the little jump in the beginning of the standing curve. 
Because baby development is typically measured in months rather than weeks 
we performed a second analysis in which time is grouped into 17 intervals, each 
of which approximately spans a month (each quarter was divided into 4,4 and 
5 weeks). The curves are restricted to be constant within months. 

The object scores differ little from the scores found above. The first three 
eigenvalues are now 0.420,0.333 and 0.216. These are smaller of course, but 
only slightly, and so, grouping weeks into months does not notably change the 
solution. The time curves are plotted in Figure 3 (next page). Equality smooths 
the curves such that most irregularities are removed. Of course "Torey's 
Plateau" is still visible. 

The time curves reflect how the transition between states like steppirig and 
standing varies over time. From a developmental point of view it is also 
interesting to study how babies differ for each other in choosing tlheir routes 
from crawling to walking. Going one step further then, suppose we restrict all 
scalevalues to be equal across time. We then mimic the hypothetical situation 
in which all babies begin to step, stand and walk at the same time. Clearly, in 
such a situation all curves will be flat, and this is just what the equality 
restriction leads to (see Figure 4). 

Because we neglect all growth variation now, the first three eigenvalues of 
the solution decline dramatically to 0.159,0.088 and 0.020, respectively. The 
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atepplng 

walking with help 

Weeks 

Figure 3 
Quantifications plotted against time, restricted by month. 

0.6 
standlng 

Weeks 

- 
8 -0.2 - 
J - 
g 

Figure 4 
Quantifications plotted against time, restricted for all weeks. 

walking wlthout help 
walwna wwn nap 

" 0 ~ 9  
hpplng 
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configuration of object scores looks different now, though Torey still stands 
out. 

Figure 5 displays the joint plot of babies and states for the first two 
dimensions. Dimension 1 is dominated by Torey and Donovan, who stood for 
27 weeks. The "c" in the figure, indicating the location of the standing 
category, plainly loads on this dimension. The top position is reserved for 
Larry, who was the first to step but the last to walk. Martin, Max, Carol, Sybil 
and Virginia Ruth all could walk alone before they were 60 weeks of age. 
Differences between these early walkers are caused mainly by the time they 
needed to master the last phase. Despite the low eigenvalues associated with 
the axes the plot is easy to interpret. It portrays the salient differences in 
motoric development. 

Conclusion 

Let us make some final observations on equality. Equality provides a 
simple and straightforward extension of MCA. This article sketches some 
applications and interpretations of equality and outlines the accampai~ying 
computational procedures. 

C Larry i x stepplng + standlng 
, 0 walklng wlth help 

j i a walklng wlthout help / BABIES 

Donovan 

/ Carol 
j 

I Wbll 
MarHn Lg, , , , , 

i .  Vlrglnla Ruth 
-2 

-2 -1 0 1 2 3 4 

Figure 5 
Joint plot for the completely restricted solution. 
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Because the method naturally fits into the Gifi system of nonlinear 
multivariate analysis, it is not difficult to extend the technique to more general 
situations. The equality restriction is actually a simple special case of the 
general linear constraint Yj = SjY with arbitrary Si. If desired, our results can 
extended to other dependency patterns in Sj. Likewise, allowing for mixed 
measurement levels does not present new problems. If variables are partitioned 
into subsets however, the loss function does not split nicely anymore and then 
we need a more complicated majorization approach. See van Buuren (1990) 
for details. Equality can be used in conjunction with the "missing data deleted" 
option without any problems. This is so because the Mj matrix that codes 
missing responses (Gifi, 1990) does not appear into the second and third 
components of Equation 2, where the weighting of non-missing entries is 
accounted for by Dj. 

It should be relatively easy to implement equality into existing software 
packages. We found that the resulting algorithm usually becomes somewhat 
faster, especially if equality is applied to all variables simultaneously. Most 
important of all however, there exist useful applications. Whenever categories 
can be interpreted as (nearly) identical it makes sense to consider equality. If 
there is no reason to treat categories one by one why should one do so? Equality 
provides an easy way to incorporate prior knowledge. Less parameters are 
needed and hence the stability and clarity of the solution are likely to increase. 
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